336
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Reclaiming phosphate from aqueous solution using biochar derived from anaerobically digested waste activated sludge and its potential as phosphate fertilizer

, , , , &
Article: 2287237 | Received 25 Sep 2023, Accepted 18 Nov 2023, Published online: 27 Nov 2023

References

  • Wang X, Hou H, Liu P, et al. Acceleration of nitrogen removal performance in a biofilm reactor augmented with Pseudomonas sp. using polycaprolactone as carbon source for treating low carbon to nitrogen wastewater. Biores Technol. 2023;386:129507. doi: 10.1016/j.biortech.2023.129507
  • Chai Y, Huang C, Sui M, et al. Fe-loaded alginate hydrogel beads activating peroxymonosulfate for enhancing anaerobic fermentation of waste activated sludge: performance and potential mechanism. J Environ Manage. 2023;341:118079. doi: 10.1016/j.jenvman.2023.118079
  • Tulun Ş, Bilgin M. Enhancement of anaerobic digestion of waste activated sludge by chemical pretreatment. Fuel. 2019;254:115671. doi: 10.1016/j.fuel.2019.115671
  • Ding HH, Chang S, Liu Y. Biological hydrolysis pretreatment on secondary sludge: enhancement of anaerobic digestion and mechanism study. Bioresour Technol. 2017;244:989–597. doi: 10.1016/j.biortech.2017.08.064
  • Huang C, Wang W, Sun X, et al. A novel acetogenic bacteria isolated from waste activated sludge and its potential application for enhancing anaerobic digestion performance. J Environ Manage. 2020;255:109842. doi: 10.1016/j.jenvman.2019.109842
  • Carrère H, Dumas C, Battimelli A, et al. Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater. 2010;183(1):1–15. doi: 10.1016/j.jhazmat.2010.06.129
  • Selvaraj PS, Periasamy K, Suganya K, et al. Novel resources recovery from anaerobic digestates: Current trends and future perspectives. Critical Rev Environ Sci Technol. 2022;52(11):1915–1999. doi: 10.1080/10643389.2020.1864957
  • Dong B, Liu X, Dai L, et al. Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge. Bioresour Technol. 2013;131:152–158. doi: 10.1016/j.biortech.2012.12.112
  • Wang Z, Liu T, Duan H, et al. Post-treatment options for anaerobically digested sludge: Current status and future prospect. Water Res. 2021;205:117665. doi: 10.1016/j.watres.2021.117665
  • Cui L, Noerpel MR, Scheckel KG, et al. Wheat straw biochar reduces environmental cadmium bioavailability. Environ Int. 2019;126:69–75. doi: 10.1016/j.envint.2019.02.022
  • Almanassra IW, Chatla A, Zakaria Y, et al. Palm leaves based biochar: advanced material characterization and heavy metal adsorption study. Biomass Convers Biorefin. 2022. doi:10.1007/s13399-022-03590-y
  • Chen T, Zhang Y, Wang H, et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Biores Technol. 2014;164:47–54. doi: 10.1016/j.biortech.2014.04.048
  • Li J, Li B, Huang H, et al. Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge. Sci Total Environ. 2019;687:460–469. doi: 10.1016/j.scitotenv.2019.05.400
  • Song XD, Xue XY, Chen DZ, et al. Application of biochar from sewage sludge to plant cultivation: influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere. 2014;109:213–220. doi: 10.1016/j.chemosphere.2014.01.070
  • Inyang M, Gao B, Pullammanappallil P, et al. Biochar from anaerobically digested sugarcane bagasse. Biores Technol. 2010;101(22):8868–8872. doi: 10.1016/j.biortech.2010.06.088
  • Yao Y, Gao B, Inyang M, et al. Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Biores Technol. 2011;102(10):6273–6278. doi: 10.1016/j.biortech.2011.03.006
  • Ni BJ, Huang QS, Wang C, et al. Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere. 2019;219:351–357. doi: 10.1016/j.chemosphere.2018.12.053
  • Huang C, Lai J, Sun X, et al. Enhancing anaerobic digestion of waste activated sludge by the combined use of NaOH and Mg (OH) 2: performance evaluation and mechanism study. Biores Technol. 2016;220:601–608. doi: 10.1016/j.biortech.2016.08.043
  • Huang C, Wang L, Fan L, et al. Co-pyrolysis of fenton sludge and pomelo peel for heavy metal stabilization: speciation mechanism and risk evaluation. Water. 2023;15(21):3733. doi: 10.3390/w15213733
  • Yu J, Li X, Wu M, et al. Synergistic role of inherent calcium and iron minerals in paper mill sludge biochar for phosphate adsorption. Sci Total Environ. 2022;834:155193. doi: 10.1016/j.scitotenv.2022.155193
  • Khalil AKA, Dweiri F, Almanassra IW, et al. Mg-al layered Double hydroxide doped activated carbon composites for phosphate removal from synthetic water: adsorption and thermodynamics studies. Sustainability. 2022;14(12):6991. doi: 10.3390/su14126991
  • Hossain MK, Strezov V, Chan KY, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manage. 2011;92(1):223–228. doi: 10.1016/j.jenvman.2010.09.008
  • Wang Z, Guo H, Shen F, et al. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3−), and phosphate (PO43−). Chemosphere. 2015;119(Supplement C):646–653. doi: 10.1016/j.chemosphere.2014.07.084
  • Tang Y, Alam MS, Konhauser KO, et al. Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. J Clean Prod. 2019;209:927–936. doi: 10.1016/j.jclepro.2018.10.268
  • Bolan N, Sarmah AK, Bordoloi S, et al. Soil acidification and the liming potential of biochar. Environ Pollut. 2023;317:120632. doi: 10.1016/j.envpol.2022.120632
  • Zhang S, Gu W, Geng Z, et al. Immobilization of heavy metals in biochar by co-pyrolysis of sludge and CaSiO3. J Environ Manage. 2023;326:116635. doi: 10.1016/j.jenvman.2022.116635
  • Wang X, Wei-Chung Chang V, Li Z, et al. Co-pyrolysis of sewage sludge and food waste digestate to synergistically improve biochar characteristics and heavy metals immobilization. Waste Manage. 2022;141:231–239. doi: 10.1016/j.wasman.2022.02.001
  • Ho S-H, Chen Y-D, Yang Z-K, et al. High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge. Bioresour Technol. 2017;246:142–149. doi: 10.1016/j.biortech.2017.08.025
  • Huang P, Ge C, Feng D, et al. Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar. Sci Total Environ. 2018;616-617:1384–1391. doi: 10.1016/j.scitotenv.2017.10.177
  • Shi W, Fu Y, Jiang W, et al. Enhanced phosphate removal by zeolite loaded with Mg–al–La ternary (hydr)oxides from aqueous solutions: performance and mechanism. Chem Eng J. 2019;357:33–44. doi: 10.1016/j.cej.2018.08.003
  • Chen Y-D, Ho S-H, Wang D, et al. Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis. Bioresour Technol. 2018;247:463–470. doi: 10.1016/j.biortech.2017.09.125
  • Li JH, Lv GH, Bai WD, et al. Modification and use of biochar from wheat straw (triticum aestivum L.) for nitrate and phosphate removal from water. Desalin Water Treat. 2016a;57(10):4681–4693.
  • Wang L, Wang J, He C, et al. Development of rare earth element doped magnetic biochars with enhanced phosphate adsorption performance. Colloids Surf A Physicochem Eng Asp. 2019;561:236–243. doi: 10.1016/j.colsurfa.2018.10.082
  • Li R, Wang JJ, Zhou B, et al. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute. Biores Technol. 2016b;215:209–214. doi: 10.1016/j.biortech.2016.02.125
  • Peng Y, Luo Y, Li Y, et al. Effect of corn pre-puffing on the efficiency of MgO-engineered biochar for phosphorus recovery from livestock wastewater: mechanistic investigations and cost benefit analyses. Biochar. 2023;5(1):26. doi: 10.1007/s42773-023-00212-2
  • Luo H, Wan Y, Cai Y, et al. Enhanced phosphate adsorption by mg-stirred leaf biochar in a complex water matrix via active MgO facet exposure. ACS EST Eng. 2022;2(12):2254–2265. doi: 10.1021/acsestengg.2c00212
  • Zheng Q, Yang L, Song D, et al. High adsorption capacity of Mg–Al-modified biochar for phosphate and its potential for phosphate interception in soil. Chemosphere. 2020;259:127469. doi: 10.1016/j.chemosphere.2020.127469
  • Chatla A, Almanassra IW, Jaber L, et al. Influence of calcination atmosphere on Fe doped activated carbon for the application of lead removal from water. Colloids Surf A Physicochem Eng Asp. 2022;652:129928. doi: 10.1016/j.colsurfa.2022.129928
  • Vikrant K, Kim KH, Ok YS, et al. Engineered/Designer biochar for the removal of phosphate in water and wastewater. Science Of The Total Environment. 2018;616-617:1242–1260. doi: 10.1016/j.scitotenv.2017.10.193
  • Takaya CA, Fletcher LA, Singh S, et al. Recovery of phosphate with chemically modified biochars. J Environ Chem Eng. 2016;4(1):1156–1165. doi: 10.1016/j.jece.2016.01.011
  • Wan S, Wang S, Li Y, et al. Functionalizing biochar with Mg–al and Mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions. J Ind Eng Chem. 2017;47:246–253. doi: 10.1016/j.jiec.2016.11.039
  • Jiang D, Chu B, Amano Y, et al. Removal and recovery of phosphate from water by Mg-laden biochar: batch and column studies. Colloids Surf A Physicochem Eng Asp. 2018;558:429–437. doi: 10.1016/j.colsurfa.2018.09.016
  • Wang Z, Shen D, Shen F, et al. Phosphate adsorption on lanthanum loaded biochar. Chemosphere. 2016;150:1–7. doi: 10.1016/j.chemosphere.2016.02.004
  • Yao Y, Gao B, Zhang M, et al. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere. 2012;89(11):1467–1471. doi: 10.1016/j.chemosphere.2012.06.002
  • Zhu D, Chen Y, Yang H, et al. Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution. Chemosphere. 2020;247:125847. doi: 10.1016/j.chemosphere.2020.125847
  • Fang L, Yan F, Chen J, et al. Novel recovered compound phosphate fertilizer produced from sewage sludge and its incinerated ash. ACS Sustain Chem Eng. 2020;8(17):6611–6621. doi: 10.1021/acssuschemeng.9b06861
  • Yao Y, Gao B, Chen J, et al. Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environ Sci Technol. 2013;47(15):8700–8708. doi: 10.1021/es4012977
  • Chen Y-D, Bai S, Li R, et al. Magnetic biochar catalysts from anaerobic digested sludge: production, application and environment impact. Environ Int. 2019;126:302–308. doi: 10.1016/j.envint.2019.02.032
  • Duan S, He J, Xin X, et al. Characteristics of digested sludge-derived biochar for promoting methane production during anaerobic digestion of waste activated sludge. Bioresour Technol. 2023;384:129245. doi: 10.1016/j.biortech.2023.129245