579
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Genotypic variation in cadmium uptake and accumulation among fine-aroma cacao genotypes from northern Peru: a model hydroponic culture study

, , , &
Article: 2287710 | Received 09 Oct 2023, Accepted 20 Nov 2023, Published online: 27 Nov 2023

References

  • Pernía B, De Sousa A, Reyes R, et al. Biomarcadores de contaminación por cadmio en las plantas. Interciencia. 2008;33:112–609. http://ve.scielo.org/scielo.php?script=sci_abstract&pid=S0378-18442008000200007&lng=es&nrm=iso&tlng=es
  • Rodríguez D. Intoxicación ocupacional por metales pesados. Medisan. 2017;21:3372–3385. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1029-30192017001200012&lng=es&nrm=iso&tlng=es
  • Reyes Y, Vergara I, Torres O, et al. Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria. Ing Investig Desarro. 2016;16(2):66–77. doi: 10.19053/1900771X.v16.n2.2016.5447
  • Arévalo-Gardini E, Arévalo-Hernández CO, Baligar VC, et al. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Sci Total Environ. 2017;605–606:792–800. doi: 10.1016/j.scitotenv.2017.06.122
  • Thomas E, Atkinson R, Zavaleta D, et al. The distribution of cadmium in soil and cacao beans in Peru. Sci Total Environ. 2023;881:163372. doi: 10.1016/j.scitotenv.2023.163372
  • Oliva M, Camas DE, Valqui XJ, et al. Quantitative determination of cadmium (Cd) in soil-plant system in potato cropping (solanum tuberosum var. Huayro). Adv Agric. 2019;2019:e9862543. doi: 10.1155/2019/9862543
  • Ye Y, Dong W, Luo Y, et al. Cultivar diversity and organ differences of cadmium accumulation in potato (solanum tuberosum L.) allow the potential for Cd-safe staple food production on contaminated soils. Sci Total Environ. 2020;711:134534. doi: 10.1016/j.scitotenv.2019.134534
  • Kandziora-Ciupa M, Dabioch M, Nadgórska-Socha A. Evaluating the accumulation of antioxidant and macro- and trace elements in vaccinium myrtillus L. Biol Trace Elem Res. 2022;200(9):4175–4185. doi: 10.1007/s12011-021-02989-4
  • Wang Y, Su Y, Lu S. Predicting accumulation of Cd in rice (oryza sativa L.) and soil threshold concentration of Cd for rice safe production. Sci Total Environ. 2020;738:139805. doi: 10.1016/j.scitotenv.2020.139805
  • Zou M, Zhou S, Zhou Y, et al. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: a review. Environ Pollut. 2021;280:116965. doi: 10.1016/j.envpol.2021.116965
  • Bai L, Ding S, Huang X, et al. Prediction of the cadmium content in grains of low-accumulating wheat cultivars and soil cadmium threshold for safe production. J Clean Prod. 2023;417:138081. doi: 10.1016/j.jclepro.2023.138081
  • Lin K, Williams DV, Zeng M, et al. Identification of low grain cadmium accumulation genotypes and its physiological mechanism in maize (zea mays L.). Environ Sci Pollut Res. 2022;29(14):20721–20730. doi: 10.1007/s11356-021-16991-9
  • Akoury E, El Kantar S, Abdallah H, et al. Evaluation of cadmium uptake and consumption of parsley in Lebanese diet. Int J Environ Sci Technol. 2023;20:6079–6090. doi: 10.1007/s13762-023-04912-x
  • Bashkin VN, Galiulina RA. Accumulation of heavy metals in vegetable crops. Russ Agricult Sci. 2022;48(S1):S164–S173. doi: 10.3103/S1068367422070035
  • Marques DN, Nogueira ML, Gaziola SA, et al. New insights into cadmium tolerance and accumulation in tomato: dissecting root and shoot responses using cross-genotype grafting. Environ Res. 2023;216:114577. doi: 10.1016/j.envres.2022.114577
  • Kirichuk AA, Skalny AA, Rusakov AI, et al. Arsenic, cadmium, mercury, and lead levels in hair and urine in first-year RUDN University students of different geographic origins. Environ Sci Pollut Res. 2020;27(27):34348–34356. doi: 10.1007/s11356-020-09683-3
  • Olivero-Verbel J, Alvarez-Ortega N, Alcala-Orozco M, et al. Population exposure to lead and mercury in Latin America. Curr Opin Toxicol. 2021;27:27–37. doi: 10.1016/j.cotox.2021.06.002
  • Kongor JE, Hinneh M, de Walle DV, et al. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review. Food Res Int. 2016;82:44–52. doi: 10.1016/j.foodres.2016.01.012
  • Abbott PC, Benjamin TJ, Burniske GR, et al., An analysis of the supply chain of cacao in Colombia, United States agency for International development, Cali. CO. 2018. (accessed June 21, 2023). https://cgspace.cgiar.org/handle/10568/96636
  • Rodriguez-Medina C, Arana AC, Sounigo O, et al. Cacao breeding in Colombia, past, present and future. Breed Sci. 2019;69(3):373–382. doi: https://doi.org/10.1270/jsbbs.19011
  • Arévalo-Hernández CO, Arévalo-Gardini E, Barraza F, et al. Growth and nutritional responses of wild and domesticated cacao genotypes to soil Cd stress. Sci Total Environ. 2021;763:144021. doi: 10.1016/j.scitotenv.2020.144021
  • European Commission. COMMISSION REGULATION (EU) no 488/2014 of 12 May 2014 amending regulation (EC) no 1881/2006 as regards maximum levels of cadmium in foodstuffs. Off J Eur Union. 2014;138:75–79.
  • Fernández-Paz J, Cortés AJ, Hernández-Varela CA, et al. Rootstock-mediated genetic variance in cadmium uptake by juvenile cacao (Theobroma cacao L.) genotypes, and its effect on growth and physiology. Front Plant Sci. 2021;12. doi: 10.3389/fpls.2021.777842
  • Galvis DA, Jaimes-Suárez YY, Rojas Molina J, et al. Unveiling cacao rootstock-genotypes with potential use in the mitigation of cadmium bioaccumulation. Plants. 2023;12(16):2941. doi: 10.3390/plants12162941
  • González-Orozco CE, Osorio-Guarín JA, Yockteng R. Phylogenetic diversity of cacao (Theobroma cacao L.) genotypes in Colombia. Plant Genet Resour. 2022;20:203–214. doi: 10.1017/S1479262123000047
  • Lewis C, Lennon AM, Eudoxie G, et al. Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Sci Total Environ. 2018;640–641:696–703. doi: 10.1016/j.scitotenv.2018.05.365
  • Bustamante DE, Motilal LA, Calderon MS, et al. Genetic diversity and population structure of fine aroma cacao (Theobroma cacao L.) from north Peru revealed by single nucleotide polymorphism (SNP) markers. Front Ecol Evol. 2022;10:895056. accessed June 21, 2023. DOI:10.3389/fevo.2022.895056.
  • Oliva-Cruz M, Goñas M, García LM, et al. Phenotypic characterization of fine-aroma cocoa from Northeastern Peru. Int J Agron. 2021;2021:1–12. doi: 10.1155/2021/2909909
  • Oliva-Cruz M, Goñas M, Bobadilla LG, et al. Genetic groups of fine-aroma native cacao based on morphological and sensory descriptors in northeast Peru. Front Plant Sci. 2022 accessed June 21, 2023;13:896332. DOI:10.3389/fpls.2022.896332.
  • Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. in: University of California, College of Agriculture, Agricultural Experiment Station; 1938. p. 1884–1949.
  • Moore RET, Ullah I, de Oliveira VH, et al. Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by Theobroma cacao and role of natural resistance-associated macrophage protein 5 and heavy metal ATPase-family transporters. Hortic Res. 2020 71;7(1). doi: 10.1038/s41438-020-0292-6
  • Zhuang P, Yang QW, Wang HB, et al. Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut. 2007;184(1–4):235–242. doi: 10.1007/s11270-007-9412-2
  • Padmavathiamma PK, Li LY. Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut. 2007;184(1–4):105–126. doi: 10.1007/s11270-007-9401-5
  • O’Callaghan-Gordo C, Flores JA, Lizárraga P, et al. Oil extraction in the Amazon basin and exposure to metals in indigenous populations. Environ Res. 2018;162:226–230. doi: 10.1016/j.envres.2018.01.013
  • Yusta-García R, Orta-Martínez M, Mayor P, et al. Water contamination from oil extraction activities in northern Peruvian amazonian rivers. Environ Pollut. 2017;225:370–380. doi: 10.1016/j.envpol.2017.02.063
  • Lux A, Martinka M, Vaculík M, et al. Root responses to cadmium in the rhizosphere: a review. J Exp Bot. 2011;62(1):21–37. doi: 10.1093/jxb/erq281
  • Zitka O, Krystofova O, Hynek D, et al. Metal Transporters in Plants. In: Gupta DK, Corpas FJ, and Palma JM editors. Heavy metal stress plants. Berlin, Heidelberg: Springer; 2013. p. 19–41. doi:10.1007/978-3-642-38469-1_2
  • Dias MC, Monteiro C, Moutinho-Pereira J, et al. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant. 2013;35:1281–1289. doi: 10.1007/s11738-012-1167-8
  • Myśliwa-Kurdziel B, Prasad MNV, Strzałtka K. Photosynthesis in heavy metal stressed plants. In: Prasad MNV editor. Heavy metal stress plants biomolecular ecosystems. Berlin, Heidelberg: Springer; 2004. p. 146–181. doi:10.1007/978-3-662-07743-6_6
  • Hossain MA, Hasanuzzaman M, Fujita M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycine betaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants Int J Funct Plant Biol. 2010;16(3):259–272. doi: 10.1007/s12298-010-0028-4
  • Qin S, Liu H, Nie Z, et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere. 2020;30(2):168–180. doi: https://doi.org/10.1016/S1002-0160(20)60002-9
  • Benavides MP, Gallego SM, Tomaro ML. Cadmium toxicity in plants. Braz J Plant Physiol. 2005;17:21–34. doi: 10.1590/S1677-04202005000100003
  • Huang X, Duan S, Wu Q, et al. Reducing cadmium accumulation in plants: structure–function relations and tissue-specific operation of transporters in the spotlight. Plants. 2020;9(2):223. doi: https://doi.org/10.3390/plants9020223
  • Wan L, Zhang H. Cadmium toxicity. Plant Signal Behav. 2012;7(3):345–348. doi: 10.4161/psb.18992
  • Guo H, Hong C, Xiao M, et al. Real-time kinetics of cadmium transport and transcriptomic analysis in low cadmium accumulator Miscanthus sacchariflorus. Planta. 2016;244(6):1289–1302. doi: https://doi.org/10.1007/s00425-016-2578-3
  • Satoh-Nagasawa N, Mori M, Nakazawa N, et al. Mutations in rice (oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol. 2012;53:213–224. doi: 10.1093/pcp/pcr166
  • He Z, Li J, Zhang H, et al. Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in lactuca sativa. Plant Sci. 2005;168:309–318. doi: 10.1016/j.plantsci.2004.07.001
  • Jozefczak M, Keunen E, Schat H, et al. Differential response of arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity. Plant Physiol Biochem PPB. 2014;83:1–9. doi: 10.1016/j.plaphy.2014.07.001
  • Llatance WO, Gonza CJ, Guzmán W, et al. Bioacumulación de cadmio en el cacao (Theobroma cacao) en la Comunidad Nativa de Pakun, Perú.Revista Forestal del Perú. 2018 accessed June 21, 2023;33(1):63–75. https://revistas.lamolina.edu.pe/index.php/rfp/article/view/1156.
  • Monferrán MV, Wunderlin DA. Biochemistry of metals/metalloids toward remediation process. In: Gupta DK, Corpas FJ, and Palma JM editors. Heavy metal stress plants. Berlin, Heidelberg: Springer; 2013. p. 43–71. doi:10.1007/978-3-642-38469-1_3
  • Mori S, Uraguchi S, Ishikawa S, et al. Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum. Environ Exp Bot. 2009;67(1):127–132. doi: 10.1016/j.envexpbot.2009.05.006
  • Page V, Feller U. Heavy metals in crop plants: transport and redistribution processes on the whole plant level. Agronomy. 2015;5(3):447–463. doi: https://doi.org/10.3390/agronomy5030447
  • Richau KH, Kozhevnikova AD, Seregin IV, et al. Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator thlaspi caerulescens. New Phytologist. 2009;183(1):106–116. doi: 10.1111/j.1469-8137.2009.02826.x
  • Uraguchi S, Mori S, Kuramata M, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot. 2009;60(9):2677–2688. doi: 10.1093/jxb/erp119
  • Page V, Weisskopf L, Feller U. Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytol. 2006;171:329–341. doi: 10.1111/j.1469-8137.2006.01756.x
  • Liu J, Mo L, Zhang X, et al. Simultaneous hyperaccumulation of cadmium and manganese in Celosia argentea Linn. Int J Phytoremediation. 2018;20(11):1106–1112. doi: 10.1080/15226514.2017.1365341
  • Ismael MA, Elyamine AM, Moussa MG, et al. Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics. 2019;11:255–277. doi: 10.1039/c8mt00247a
  • Barati E, Moore RET, Ullah I, et al. An investigation of zinc isotope fractionation in cacao (Theobroma cacao L.) and comparison of zinc and cadmium isotope compositions in hydroponic plant systems under high cadmium stress. Sci Rep. 2023;13(1):4682. doi: 10.1038/s41598-023-30899-z
  • Lettens S, Vandecasteele B, De Vos B, et al. Intra- and inter-annual variation of Cd, Zn, mn and cu in foliage of poplars on contaminated soil. Sci Total Environ. 2011;409(11):2306–2316. doi: 10.1016/j.scitotenv.2011.02.029
  • Meter A, Atkinson RJ, Laliberte B, Cadmio en el cacao de América Latina y el Caribe: Análisis de la investigación y soluciones potenciales para la mitigación. Roma (Italia): Bioversity International 2019. [cited 2023 June 21]. Available from: https://cgspace.cgiar.org/handle/10568/102354
  • Ishikawa S, Suzui N, Ito-Tanabata S, et al. Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting107Cd tracer. Bmc Plant Biol. 2011;11(1):172. doi: https://doi.org/10.1186/1471-2229-11-172
  • Wang CX, Mo Z, Wang H, et al. The transportation, time-dependent distribution of heavy metals in paddy crops. Chemosphere. 2003;50(6):717–723. doi: https://doi.org/10.1016/S0045-6535(02)00211-4
  • Zhang J, Martinoia E, Lee Y. Vacuolar transporters for cadmium and arsenic in plants and their applications in Phytoremediation and crop development. Plant Cell Physiol. 2018;59:1317–1325. doi: 10.1093/pcp/pcy006
  • Nishizono H, Ichikawa H, Suziki S, et al. The role of the root cell wall in the heavy metal tolerance ofAthyrium yokoscense. Plant Soil. 1987;101(1):15–20. doi: https://doi.org/10.1007/BF02371025
  • Shahid M, Dumat C, Khalid S, et al. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. In: de Voogt P, and Gunther FA, editors. Reviews of environmental contamination and toxicology. Vol. 241. Cham: Springer International Publishing; 2017. p. 73–137. 10.1007/398_2016_8
  • Singh M, PratapSingh V, Dubey G, et al. Exogenous proline application ameliorates toxic effects of arsenate in Solanum melongena L. Seedlings Ecotoxicol Environ Saf. 2015;117:164–173. doi: 10.1016/j.ecoenv.2015.03.021
  • Xin J, Huang B, Yang Z, et al. Comparison of cadmium subcellular distribution in different organs of two water spinach (ipomoea aquatica Forsk.). Cultivars Plant Soil. 2013;372(1–2):431–444. doi: 10.1007/s11104-013-1729-6
  • Argüello D, Chavez E, Lauryssen F, et al. Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: a nationwide survey in Ecuador. Sci Total Environ. 2019;649:120–127. doi: 10.1016/j.scitotenv.2018.08.292
  • Barceló J, Poschenrieder C. Respuestas de las plantas a la contaminación por metales pesados. Suelo Planta. 1992;2:345–361.
  • Clemens S, Palmgren MG, Krämer U. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 2002;7:309–315. doi: 10.1016/S1360-1385(02)02295-1
  • Song Y, Jin L, Wang X. Cadmium absorption and transportation pathways in plants. Int J Phytoremediation. 2017;19(2):133–141. doi: 10.1080/15226514.2016.1207598
  • Vanderschueren R, Wantiez L, Blommaert H, et al. Revealing the pathways of cadmium uptake and translocation in cacao trees (Theobroma cacao L.): a 108Cd pulse-chase experiment. Sci Total Environ. 2023;869:161816. doi: 10.1016/j.scitotenv.2023.161816
  • Clemens S, Antosiewicz DM, Ward JM, et al. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci. 1998;95:12043–12048. doi: 10.1073/pnas.95.20.12043
  • Guerinot ML. The ZIP family of metal transporters, Biochim. Biophys Acta BBA - Biomembr. 2000;1465(1–2):190–198. doi: 10.1016/S0005-2736(00)00138-3
  • Ullah I, Wang Y, Eide DJ, et al. Evolution, and functional analysis of natural resistance-associated macrophage proteins (NRAMPs) from Theobroma cacao and their role in cadmium accumulation. Sci Rep. 2018;8:14412. doi: 10.1038/s41598-018-32819-y
  • Cornejo OE, Yee M-C, Dominguez V, et al. Population genomic analyses of the chocolate tree, Theobroma cacao L., provide insights into its domestication process. Commun Biol. 2018;1:167. doi: 10.1038/s42003-018-0168-6
  • Zhang D, Gardini EA, Motilal LA, et al. Dissecting genetic structure in farmer selections of Theobroma cacao in the Peruvian Amazon: implications for on farm conservation and rehabilitation. Trop Plant Biol. 2011;4:106–116. doi: 10.1007/s12042-010-9064-z