Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 10, 2024 - Issue 1
682
Views
0
CrossRef citations to date
0
Altmetric
Environmental Chemistry

A state-of-the-art review of trends in molecularly imprinted polymers in the clean-up of pesticides in environmental samples

, , ORCID Icon &
Article: 2298067 | Received 20 Oct 2023, Accepted 18 Dec 2023, Published online: 29 Jan 2024

References

  • Ahmad, I., Siddiqui, W. A., Qadir, S., & Ahmad, T. (2018). Synthesis and characterization of molecular imprinted nanomaterials for the removal of heavy metals from water. Journal of Materials Research and Technology, 7(3), 270–21. https://doi.org/10.1016/j.jmrt.2017.04.010
  • Akoto, O., Gavor, S., Appah, M. K., & Apau, J. (2015). Estimation of human health risk associated with the consumption of pesticide-contaminated vegetables from Kumasi, Ghana. Environmental Monitoring and Assessment, 187(5), 1–9. https://doi.org/10.1007/s10661-015-4471-0
  • Anastassiades, M., Lehotay, S. J., Štajnbaher, D., & Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86(2), 412–431. https://doi.org/10.1093/jaoac/86.2.412
  • Anirudhan, T. S., & Alexander, S. (2015). Design and fabrication of molecularly imprinted polymer-based potentiometric sensor from the surface modified multiwalled carbon nanotube for the determination of lindane (γ-hexachlorocyclohexane), an organochlorine pesticide. Biosensors and Bioelectronics, 64, 586–593. https://doi.org/10.1016/j.bios.2014.09.074
  • Azizi, A., & Bottaro, C. S. (2020). A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. Journal of Chromatography A, 1614, 460603. https://doi.org/10.1016/j.chroma.2019.460603
  • Azizi, A., Shahhoseini, F., & Bottaro, C. S. (2020). Magnetic molecularly imprinted polymers prepared by reversible addition fragmentation chain transfer polymerization for dispersive solid phase extraction of polycyclic aromatic hydrocarbons in water. Journal of Chromatography, 1610, 460534. https://doi.org/10.1016/j.chroma.2019.460534
  • Baghersad, M., Dehghani, M., Jafari, S., & Nasirizadeh, N. (2022). Synthesis and application of a carbon composite containing molecularly imprinted poly (methacrylic acid) for efficient removal of fenpyroximate pesticide. Journal of Environmental Science and Health, Part B, 57(12), 917–931. https://doi.org/10.1080/03601234.2022.2146959
  • Bakırcı, G. T., Acay, D. B. Y., Bakırcı, F., & Ötleş, S. (2014). Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chemistry, 160, 379–392. https://doi.org/10.1016/j.foodchem.2014.02.051
  • Banerjee, M. B., Pradhan, S., Roy, R. B., Tudu, B., Das, D. K., Bandyopadhyay, R., & Pramanik, P. (2018). Detection of benzene and volatile aromatic compounds by molecularly imprinted polymer-coated quartz crystal microbalance sensor. IEEE Sensors Journal, 19(3), 885–892. https://doi.org/10.1109/JSEN.2018.2878926
  • Barp, L., Višnjevec, A. M., & Moret, S. (2023). Pressurized liquid extraction: A powerful tool to implement extraction and purification of food contaminants. Foods, 12(10), 2017. https://doi.org/10.3390/foods12102017
  • Bazmandegan-Shamili, A., Dadfarnia, S., Haji Shabani, A. M., Saeidi, M., & Rohani Moghadam, M. (2016). High-performance liquid chromatographic determination of diazinon after its magnetic dispersive solid-phase microextraction using magnetic molecularly imprinted polymer. Food Analytical Methods, 9(9), 2621–2630. https://doi.org/10.1007/s12161-016-0456-z
  • Beckett, A., & Anderson, P. (1957). A method for the determination of the configuration of organic molecules using ‘stereo-selective adsorbents’. Nature, 179(4569), 1074–1075. https://doi.org/10.1038/1791074a0
  • Binsalom, A., Chianella, I., Campbell, K., & Zourob, M. (2016). Development of solid-phase extraction using molecularly imprinted polymer for the analysis of organophosphorus pesticides-(chlorpyrifos) in aqueous solution. Journal of Chromatography and Separation Techniques, 7(340), 2.
  • Boulanouar, S., Mezzache, S., Combès, A., & Pichon, V. (2018). Molecularly imprinted polymers for the determination of organophosphorus pesticides in complex samples. Talanta, 176, 465–478. https://doi.org/10.1016/j.talanta.2017.08.067
  • Bouvarel, T., Delaunay, N., & Pichon, V. (2020). Selective extraction of cocaine from biological samples with a miniaturized monolithic molecularly imprinted polymer and on-line analysis in nano-liquid chromatography. Analytica Chimica Acta, 1096, 89–99. https://doi.org/10.1016/j.aca.2019.10.046
  • Cazorla-Reyes, R., Fernández-Moreno, J. L., Romero-González, R., Frenich, A. G., & Vidal, J. L. M. (2011). Single solid phase extraction method for the simultaneous analysis of polar and non-polar pesticides in urine samples by gas chromatography and ultra high-pressure liquid chromatography coupled to tandem mass spectrometry. Talanta, 85(1), 183–196. https://doi.org/10.1016/j.talanta.2011.03.048
  • Cengiz, N., Guclu, G., Kelebek, H., Capanoglu, E., & Selli, S. (2022). Application of molecularly imprinted polymers for the detection of volatile and off-odor compounds in food matrices. American Chemical Society Omega, 7(18), 15258–15266. https://doi.org/10.1021/acsomega.1c07288
  • Chen, F., Xu, M., Wang, L., & Li, J. (2011). Preparation and characterization of organic aerogels by the lignin-resorcinol-formaldehyde copolymer. BioResources, 6(2), 1262–1272. https://doi.org/10.15376/biores.6.2.1262-1272
  • Cormack, P. A., & Elorza, A. Z. (2004). Molecularly imprinted polymers: Synthesis and characterisation. Journal of Chromatography B, 804(1), 173–182. https://doi.org/10.1016/j.jchromb.2004.02.013
  • Curti, R., & Colombo, U. (1952). Chromatography of stereoisomers with “tailor made” compounds. Journal of the American Chemical Society, 74(15), 3961–3961. https://doi.org/10.1021/ja01135a527
  • Dai, C.-M., Geissen, S.-U., Zhang, Y.-L., Zhang, Y.-J., & Zhou, X.-F. (2011). Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres. Environmental Pollution, 159(6), 1660–1666. https://doi.org/10.1016/j.envpol.2011.02.041
  • Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8(5), 1402–1419. https://doi.org/10.3390/ijerph8051402
  • Darko, G., & Acquaah, S. O. (2007). Levels of organochlorine pesticides residues in meat. International Journal of Environmental Science and Technology, 4(4), 521–524. https://doi.org/10.1007/BF03325989
  • Daryanavard, S. M., Jeppsson‐Dadoun, A., Andersson, L. I., Hashemi, M., Colmsjö, A., & Abdel‐Rehim, M. (2013). Molecularly imprinted polymer in microextraction by packed sorbent for the simultaneous determination of local anesthetics: Lidocaine, ropivacaine, mepivacaine and bupivacaine in plasma and urine samples. Biomedical Chromatography, 27(11), 1481–1488. https://doi.org/10.1002/bmc.2946
  • da Silva, M. S., Vão, E. R., Temtem, M., Mafra, L., Caldeira, J., Aguiar-Ricardo, A., & Casimiro, T. (2010). Clean synthesis of molecular recognition polymeric materials with chiral sensing capability using supercritical fluid technology. Application as HPLC stationary phases. Biosensors and Bioelectronics, 25(7), 1742–1747. https://doi.org/10.1016/j.bios.2009.12.023
  • Díaz-Álvarez, M., & Martín-Esteban, A. (2018). Hollow fiber membrane-protected molecularly imprinted microspheres for micro solid-phase extraction and clean-up of thiabendazole in citrus samples. Journal of Chromatography A, 1531, 39–45. https://doi.org/10.1016/j.chroma.2017.11.054
  • Dickey, F. H. (1955). Specific adsorption. The Journal of Physical Chemistry, 59(8), 695–707. https://doi.org/10.1021/j150530a006
  • Fang, L., Miao, Y., Wei, D., Zhang, Y., & Zhou, Y. (2021). Efficient removal of norfloxacin in water using magnetic molecularly imprinted polymer. Chemosphere, 262, 128032. https://doi.org/10.1016/j.chemosphere.2020.128032
  • Farajzadeh, M. A., Abbaspour, M., Mogaddam, M. R. A., & Ghorbanpour, H. (2015). Determination of some synthetic phenolic antioxidants and bisphenol a in honey using dispersive liquid–liquid microextraction followed by gas chromatography-flame ionization detection. Food Analytical Methods, 8(8), 2035–2043. https://doi.org/10.1007/s12161-015-0087-9
  • Farooq, S., Nie, J., Cheng, Y., Yan, Z., Li, J., Bacha, S. A. S., Mushtaq, A., & Zhang, H. (2018). Molecularly imprinted polymers’ application in pesticide residue detection. The Analyst, 143(17), 3971–3989. https://doi.org/10.1039/C8AN00907D
  • Gao, R., Kong, X., Wang, X., He, X., Chen, L., & Zhang, Y. (2011). Preparation and characterization of uniformly sized molecularly imprinted polymers functionalized with core–shell magnetic nanoparticles for the recognition and enrichment of protein. Journal of Materials Chemistry, 21(44), 17863–17871. https://doi.org/10.1039/c1jm12414e
  • Garcia, R., Carreiro, E. P., Ramalho, J. P. P., Mirão, J., Burke, A. J., da Silva, M. D. G., Freitas, A. M. C., & Cabrita, M. J. (2018). A magnetic controllable tool for the selective enrichment of dimethoate from olive oil samples: A responsive molecular imprinting-based approach. Food Chemistry, 254, 309–316. https://doi.org/10.1016/j.foodchem.2018.02.003
  • Garcia, R., & Freitas, A. M. C. (2011). Application of molecularly imprinted polymers for the analysis of pesticide residues in food—a highly selective and innovative approach. American Journal of Analytical Chemistry, 2(8), 16. https://doi.org/10.4236/ajac.2011.228119
  • Geng, H. R., Miao, S. S., Jin, S. F., & Yang, H. (2015). A newly developed molecularly imprinted polymer on the surface of TiO 2 for selective extraction of triazine herbicides residues in maize, water, and soil. Analytical and Bioanalytical Chemistry, 407(29), 8803–8812. https://doi.org/10.1007/s00216-015-9039-x
  • Ghatak, B. Ali, S. B. Prasad, A. Ghosh, A. Sharma, P. Tudu, B. & Bandyopadhyay, R. (2018). Application of polymethacrylic acid imprinted quartz crystal microbalance sensor for detection of 3-carene in mango. IEEE sensors journal, 18(7), 2697–2704. https://doi.org/10.1109/JSEN.2018.2794607
  • Guo, L., Ma, X., Xie, X., Huang, R., Zhang, M., Li, J., Zeng, G., & Fan, Y. (2019). Preparation of dual-dummy-template molecularly imprinted polymers coated magnetic graphene oxide for separation and enrichment of phthalate esters in water. Chemical Engineering Journal, 361, 245–255. https://doi.org/10.1016/j.cej.2018.12.076
  • Haginaka, J. (2001). HPLC-based bioseparations using molecularly imprinted polymers. Bioseparation, 10(6), 337–351. https://doi.org/10.1023/A:1021550005389
  • Han, P., Li, Z., Wei, X., Tang, L., Li, M., Liang, Z., Yin, X., & Wei, S. (2020). Ion-imprinted thermosensitive chitosan derivative for heavy metal remediation. Carbohydrate Polymers, 248, 116732. https://doi.org/10.1016/j.carbpol.2020.116732
  • Han, Q., Wang, Z., Xia, J., Chen, S., Zhang, X., & Ding, M. (2012). Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta, 101, 388–395. https://doi.org/10.1016/j.talanta.2012.09.046
  • Han, Q., Wang, X., Yang, Z., Zhu, W., Zhou, X., & Jiang, H. (2014). Fe3O4@ rGO doped molecularly imprinted polymer membrane based on magnetic field directed self-assembly for the determination of amaranth. Talanta, 123, 101–108. https://doi.org/10.1016/j.talanta.2014.01.060
  • Haupt, K., Linares, A. V., Bompart, M., & Bui, B. T. S. (2011). Molecularly imprinted polymers. Molecular Imprinting, 325, 1–28. https://doi.org/10.1007/128_2011_307
  • He, C., Long, Y., Pan, J., Li, K., & Liu, F. (2007). Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. Journal of Biochemical and Biophysical Methods, 70(2), 133–150. https://doi.org/10.1016/j.jbbm.2006.07.005
  • He, S., Zhang, L., Bai, S., Yang, H., Cui, Z., Zhang, X., & Li, Y. (2021). Advances of molecularly imprinted polymers (MIP) and their application in drug delivery. European Polymer Journal, 143, 110179. https://doi.org/10.1016/j.eurpolymj.2020.110179
  • Huang, J., Liu, J., Zhang, C., Wei, J., Mei, L., & Yu, S. (2012). Determination of sulfonamides in food samples by membrane-protected micro-solid phase extraction coupled with high-performance liquid chromatography. Journal of Chromatography A, 1219, 66–74. https://doi.org/10.1016/j.chroma.2011.11.026
  • Huang, Y., Su, W., Wang, R., & Zhao, T. (2019). Removal of typical industrial gaseous pollutants: From carbon, zeolite, and metal-organic frameworks to molecularly imprinted adsorbents. Aerosol and Air Quality Research, 19(9), 2130–2150. https://doi.org/10.4209/aaqr.2019.04.0215
  • Huang, D.-L., Wang, R.-Z., Liu, Y.-G., Zeng, G.-M., Lai, C., Xu, P., Lu, B.-A., Xu, J.-J., Wang, C., & Huang, C. (2015). Application of molecularly imprinted polymers in wastewater treatment: A review. Environmental Science and Pollution Research, 22(2), 963–977. https://doi.org/10.1007/s11356-014-3599-8
  • Ji, Y., Zhan, Y., Jiang, C., Jiang, X., Gao, M., Liu, W., Li, Y., Wang, J., Wang, Q., Cona, M. M., Yao, N., Wang, X., Fang, Z., Yin, Z., Zhang, J., Sun, Z., & Ni, Y. (2014). Improvement of solubility and targetability of radioiodinated hypericin by using sodium cholate based solvent in rat models of necrosis. Journal of Drug Targeting, 22(4), 304–312. https://doi.org/10.3109/1061186X.2013.867962
  • Kalecki, J., Iskierko, Z., Cieplak, M., & Sharma, P. S. (2020). Oriented immobilization of protein templates: A new trend in surface imprinting. ACS Sensors, 5(12), 3710–3720. https://doi.org/10.1021/acssensors.0c01634
  • Karimian, R., Piri, F., & Hosseini, Z. (2017). Magnetic molecularly imprinted nanoparticles for the solid-phase extraction of diazinon from aqueous medium, followed its determination by HPLC-UV. Journal of Applied Biotechnology Reports, 4(1), 533–539.
  • Khan, S., Hussain, S., Wong, A., Foguel, M. V., Goncalves, L. M., Gurgo, M. I. P., & Sotomayor, M. D. P. T. (2018). Synthesis and characterization of magnetic-molecularly imprinted polymers for the HPLC-UV analysis of ametryn. Reactive & Functional Polymers, 122, 175–182. https://doi.org/10.1016/j.reactfunctpolym.2017.11.002
  • Köhler, H.-R., & Triebskorn, R. (2013). Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond? Science, 341(6147), 759–765. https://doi.org/10.1126/science.1237591
  • Kosma, I., Lambropoulou, D., & Albanis, T. (2007). Determination of pharmaceutical compounds in water samples by solid-phase extraction (SPE) and gas chromatography–mass spectrometry. (Ed.),^(Eds.). Proceedings of the 10th International Conference on Environmental Science and Technology, Kos Island, Greece.
  • Kryscio, D. R., & Peppas, N. A. (2012). Critical review and perspective of macromolecularly imprinted polymers. Acta Biomaterialia, 8(2), 461–473. https://doi.org/10.1016/j.actbio.2011.11.005
  • Lehotay, S. J., Kok, A. D., Hiemstra, M., & Bodegraven, P. V. (2005). Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. Journal of AOAC International, 88(2), 595–614. https://doi.org/10.1093/jaoac/88.2.595
  • Liang, C., Zhang, Z., Zhang, H., Ye, L., He, J., Ou, J., & Wu, Q. (2020). Ordered macroporous molecularly imprinted polymers prepared by a surface imprinting method and their applications to the direct extraction of flavonoids from Gingko leaves. Food Chemistry, 309, 125680. https://doi.org/10.1016/j.foodchem.2019.125680
  • Liu, J., Wang, Y., Liu, X., Yuan, Q., Zhang, Y., & Li, Y. (2019). Novel molecularly imprinted polymer (MIP) multiple sensors for endogenous redox couples determination and their applications in lung cancer diagnosis. Talanta, 199, 573–580. https://doi.org/10.1016/j.talanta.2019.03.018
  • Liu, G., Yang, X., Li, T., She, Y., Wang, S., Wang, J., Zhang, M., Jin, F., Jin, M., Shao, H., & Shi, M. (2015). Preparation of a magnetic molecularly imprinted polymer using g-C3N4–Fe3O4 for atrazine adsorption. Materials Letters, 160, 472–475. https://doi.org/10.1016/j.matlet.2015.07.157
  • Li, Y., Wang, Y., Wang, M., Zhang, J., Wang, Q., & Li, H. (2020). A molecularly imprinted nanoprobe incorporating Cu2O@ Ag nanoparticles with different morphologies for selective SERS based detection of chlorophenols. Microchimica Acta, 187(1), 1–10. https://doi.org/10.1007/s00604-019-4052-y
  • Li, B., Xu, J., Hall, A. J., Haupt, K., & Tse Sum Bui, B. (2014). Water‐compatible silica sol–gel molecularly imprinted polymer as a potential delivery system for the controlled release of salicylic acid. Journal of Molecular Recognition, 27(9), 559–565. https://doi.org/10.1002/jmr.2383
  • Li, D., Zhang, X., Kong, F., Qiao, X., & Xu, Z. (2017). Molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography for the determination of trace trichlorfon and monocrotophos residues in fruits. Food Analytical Methods, 10(5), 1284–1292. https://doi.org/10.1007/s12161-016-0687-z
  • López Grío, S. J., Garrido Frenich, A., Martínez Vidal, J. L., & Romero‐González, R. (2010). Determination of aflatoxins B1, B2, G1, G2 and ochratoxin a in animal feed by ultra high‐performance liquid chromatography–tandem mass spectrometry. Journal of Separation Science, 33(4‐5), 502–508. https://doi.org/10.1002/jssc.200900663
  • Lu, X.-Y., Ouyang, Y.-Q., Zeng, W.-Y., Lin, C.-Q., Xiao, L.-H., Luo, G.-H., Zhan, R.-T., Yan, P., & Herrera-Herrera, A. V. (2021). Effect of pretreatment on detection of 37 pesticide residues in chrysanthemum indicum. Journal of Analytical Methods in Chemistry, 2021, 1–12. https://doi.org/10.1155/2021/8854025
  • Malik, M. I., Shaikh, H., Mustafa, G., & Bhanger, M. I. (2019). Recent applications of molecularly imprinted polymers in analytical chemistry. Separation & Purification Reviews, 48(3), 179–219. https://doi.org/10.1080/15422119.2018.1457541
  • Manousi, N., Alampanos, V., Priovolos, I., Kabir, A., Furton, K. G., Rosenberg, E., Zachariadis, G. A., & Samanidou, V. F. (2022). Exploring sol–gel zwitterionic fabric phase sorptive extraction sorbent as a new multi-mode platform for the extraction and preconcentration of triazine herbicides from juice samples. Food Chemistry, 373, 131517. https://doi.org/10.1016/j.foodchem.2021.131517
  • Martínez-Domínguez, G., Plaza-Bolaños, P., Romero-González, R., & Garrido-Frenich, A. (2014). Analytical approaches for the determination of pesticide residues in nutraceutical products and related matrices by chromatographic techniques coupled to mass spectrometry. Talanta, 118, 277–291. https://doi.org/10.1016/j.talanta.2013.10.006
  • Moreno-González, D., Cutillas, V., Hernando, M. D., Alcantara-Duran, J., Garcia-Reyes, J. F., & Molina-Díaz, A. (2020). Quantitative determination of pesticide residues in specific parts of bee specimens by nanoflow liquid chromatography high-resolution mass spectrometry. Science of the Total Environment, 715, 137005. https://doi.org/10.1016/j.scitotenv.2020.137005
  • Mosbach, K. (1994). Molecular imprinting. Trends in Biochemical Sciences, 19(1), 9–14. https://doi.org/10.1016/0968-0004(94)90166-X
  • Mostafalou, S., & Abdollahi, M. (2017). Pesticides: An update of human exposure and toxicity. Archives of Toxicology, 91(2), 549–599. https://doi.org/10.1007/s00204-016-1849-x
  • Muhammad, T., Nur, Z., Piletska, E. V., Yimit, O., & Piletsky, S. A. (2012). Rational design of molecularly imprinted polymer: The choice of cross-linker. The Analyst, 137(11), 2623–2628. https://doi.org/10.1039/c2an35228a
  • Ndunda, E. N., & Mizaikoff, B. (2016). Molecularly imprinted polymers for the analysis and removal of polychlorinated aromatic compounds in the environment: A review. The Analyst, 141(11), 3141–3156. https://doi.org/10.1039/C6AN00293E
  • Nestora, S. (2017). Molecularly imprinted polymers as selective sorbents for recognition in complex aqueous samples. Université de Technologie de Compiègne.
  • Niu, Y., Yao, Z., Xiao, Q., Xiao, Z., Ma, N., & Zhu, J. (2017). Characterization of the key aroma compounds in different light aroma type Chinese liquors by GC-olfactometry, GC-FPD, quantitative measurements, and aroma recombination. Food Chemistry, 233, 204–215. https://doi.org/10.1016/j.foodchem.2017.04.103
  • Orihara, K., Hikichi, A., Arita, T., Muguruma, H., & Yoshimi, Y. (2018). Heparin molecularly imprinted polymer thin film on gold electrode by plasma-induced graft polymerization for label-free biosensor. Journal of Pharmaceutical and Biomedical Analysis, 151, 324–330. https://doi.org/10.1016/j.jpba.2018.01.012
  • Paul, P. K., Treetong, A., & Suedee, R. (2017). Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system. Acta Pharmaceutica, 67(2), 149–168. https://doi.org/10.1515/acph-2017-0020
  • Pichon, V., Delaunay, N., & Combès, A. (2019). Sample preparation using molecularly imprinted polymers. Analytical Chemistry, 92(1), 16–33. https://doi.org/10.1021/acs.analchem.9b04816
  • Rajpal, S., & Mishra, P. (2022). Next-generation biosensors employing molecularly imprinted polymers as sensing elements for in vitro diagnostics. Biosensors and Bioelectronics: X, 11, 100201. https://doi.org/10.1016/j.biosx.2022.100201
  • Roque, L. R., Morgado, G. P., Nascimento, V. M., Ienczak, J. L., & Rabelo, S. C. (2019). Liquid-liquid extraction: A promising alternative for inhibitors removing of pentoses fermentation. Fuel, 242, 775–787. https://doi.org/10.1016/j.fuel.2018.12.130
  • Saad, H., El-Dien, F. N., El-Gamel, N. E., & Dena, A. S. A. (2021). Matrix-dispersed magnetic molecularly-imprinted polyaniline for the effective removal of chlorpyrifos pesticide from contaminated water. RSC Advances, 11(63), 39768–39780. https://doi.org/10.1039/D1RA07833J
  • Saito-Shida, S., Nemoto, S., & Matsuda, R. (2014). Multiresidue analysis of pesticides in vegetables and fruits by supercritical fluid extraction and liquid chromatography-tandem mass spectrometry. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi), 55(3), 142–151.
  • Sajid, M., & Alhooshani, K. (2020). Ultrasound-assisted solvent extraction of organochlorine pesticides from porous membrane packed tea samples followed by GC–MS analysis. Microchemical Journal, 152, 104464. https://doi.org/10.1016/j.microc.2019.104464
  • Sajini, T., & Mathew, B. (2021). A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. Talanta Open, 4, 100072. https://doi.org/10.1016/j.talo.2021.100072
  • Salian, V. D., & Byrne, M. E. (2013). Controlled drug release from weakly crosslinked molecularly imprinted networks: The benefit of living radical polymerization. Macromolecular Chemistry and Physics, 214(20), 2355–2366. https://doi.org/10.1002/macp.201300386
  • Sarafraz-Yazdi, A., & Razavi, N. (2015). Application of molecularly-imprinted polymers in solid-phase microextraction techniques. TrAc Trends in Analytical Chemistry, 73, 81–90. https://doi.org/10.1016/j.trac.2015.05.004
  • Sarpong, K. A., Xu, W., Huang, W., & Yang, W. (2019). The development of molecularly imprinted polymers in the clean-up of water pollutants: A review. American Journal of Analytical Chemistry, 10(5), 202–226. https://doi.org/10.4236/ajac.2019.105017
  • Sellergren, B. (1997). Noncovalent molecular imprinting: Antibody-like molecular recognition in polymeric network materials. TrAc Trends in Analytical Chemistry, 16(6), 310–320. https://doi.org/10.1016/S0165-9936(97)00027-7
  • Shahhoseini, F., Azizi, A., & Bottaro, C. S. (2022). A critical evaluation of molecularly imprinted polymer (MIP) coatings in solid phase microextraction devices. TrAc Trends in Analytical Chemistry, 156, 116695. https://doi.org/10.1016/j.trac.2022.116695
  • Shoravi, S., Olsson, G. D., Karlsson, B. C., Bexborn, F., Abghoui, Y., Hussain, J., Wiklander, J. G., & Nicholls, I. A. (2016). In silico screening of molecular imprinting prepolymerization systems: Oseltamivir selective polymers through full-system molecular dynamics-based studies. Organic & Biomolecular Chemistry, 14(18), 4210–4219. https://doi.org/10.1039/C6OB00305B
  • Simões, M., Martins, N., Cabrita, M. J., Burke, A. J., & Garcia, R. (2014). Tailor-made molecularly imprinted polymers for dimethoate and deltamethrin recognition: Synthesis, characterization and chromatographic evaluation. Journal of Polymer Research, 21(3), 1–13. https://doi.org/10.1007/s10965-014-0368-9
  • Speltini, A., Scalabrini, A., Maraschi, F., Sturini, M., & Profumo, A. (2017). Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: A review. Analytica chimica acta, 974, 1–26. https://doi.org/10.1016/j.aca.2017.04.042
  • Stevenson, D. (1999). Molecular imprinted polymers for solid-phase extraction. TrAc Trends in Analytical Chemistry, 18(3), 154–158. https://doi.org/10.1016/S0165-9936(98)00094-6
  • Sundhoro, M., Agnihotra, S. R., Amberger, B., Augustus, K., Khan, N. D., Barnes, A., BelBruno, J., & Mendecki, L. (2021). An electrochemical molecularly imprinted polymer sensor for rapid and selective food allergen detection. Food Chemistry, 344, 128648. https://doi.org/10.1016/j.foodchem.2020.128648
  • Sun, Y., Du, H., Lan, Y., Wang, W., Liang, Y., Feng, C., & Yang, M. (2016). Preparation of hemoglobin (hb) imprinted polymer by hb catalyzed eATRP and its application in biosensor. Biosensors and Bioelectronics, 77, 894–900. https://doi.org/10.1016/j.bios.2015.10.067
  • Sun, G., Wang, P., Ge, S., Ge, L., Yu, J., & Yan, M. (2014). Photoelectrochemical sensor for pentachlorophenol on microfluidic paper-based analytical device based on the molecular imprinting technique. Biosensors and Bioelectronics, 56, 97–103. https://doi.org/10.1016/j.bios.2014.01.001
  • Takagishi, T., & Klotz, I. M. (1972). Macromolecule‐small molecule interactions; introduction of additional binding sites in polyethyleneimine by disulfide cross–linkages. Biopolymers: Original Research on Biomolecules, 11(2), 483–491. https://doi.org/10.1002/bip.1972.360110213
  • Tang, Y., Lan, J., Gao, X., Liu, X., Zhang, D., Wei, L., Gao, Z., & Li, J. (2016). Determination of clenbuterol in pork and potable water samples by molecularly imprinted polymer through the use of covalent imprinting method. Food Chemistry, 190, 952–959. https://doi.org/10.1016/j.foodchem.2015.06.067
  • Tarannum, N., Khatoon, S., & Dzantiev, B. B. (2020). Perspective and application of molecular imprinting approach for antibiotic detection in food and environmental samples: A critical review. Food Control, 118, 107381. https://doi.org/10.1016/j.foodcont.2020.107381
  • Teixeira, R. A., Dinali, L. A. F., de Oliveira, H. L., da Silva, A. T. M., & Borges, K. B. (2021). Efficient and selective extraction of azamethiphos and chlorpyrifos residues from mineral water and grape samples using magnetic mesoporous molecularly imprinted polymer. Food Chemistry, 361, 130116. https://doi.org/10.1016/j.foodchem.2021.130116
  • Urraca, J., Marazuela, M., Merino, E., Orellana, G., & Moreno-Bondi, M. (2006). Molecularly imprinted polymers with a streamlined mimic for zearalenone analysis. Journal of Chromatography A, 1116(1–2), 127–134. https://doi.org/10.1016/j.chroma.2006.03.032
  • Vargas-Berrones, K., Ocampo-Perez, R., Rodríguez-Torres, I., Medellín-Castillo, N. A., & Flores-Ramírez, R. (2023). Molecularly imprinted polymers (MIPs) as efficient catalytic tools for the oxidative degradation of 4-nonylphenol and its by-products. Environmental Science and Pollution Research, 30(39), 90741–90756. https://doi.org/10.1007/s11356-023-28653-z
  • Vasapollo, G., Sole, R. D., Mergola, L., Lazzoi, M. R., Scardino, A., Scorrano, S., & Mele, G. (2011). Molecularly imprinted polymers: Present and future prospective. International Journal of Molecular Sciences, 12(9), 5908–5945. https://doi.org/10.3390/ijms12095908
  • Wan, L., Chen, Z., Huang, C., & Shen, X. (2017). Core–shell molecularly imprinted particles. TrAc Trends in Analytical Chemistry, 95, 110–121. https://doi.org/10.1016/j.trac.2017.08.010
  • Wang, Y., Ma, X., Peng, Y., Liu, Y., & Zhang, H. (2021). Selective and fast removal and determination of β-lactam antibiotics in aqueous solution using multiple templates imprinted polymers based on magnetic hybrid carbon material. Journal of Hazardous Materials, 416, 126098. https://doi.org/10.1016/j.jhazmat.2021.126098
  • Wang, W., Wang, R., Liao, M., Kidd, M. T., & Li, Y. (2021). Rapid detection of enrofloxacin using a localized surface plasmon resonance sensor based on polydopamine molecular imprinted recognition polymer. Journal of Food Measurement and Characterization, 15(4), 3376–3386. https://doi.org/10.1007/s11694-021-00913-x
  • Wan Ibrahim, W. A., Nodeh, H. R., Aboul-Enein, H. Y., & Sanagi, M. M. (2015). Magnetic solid-phase extraction based on modified ferum oxides for enrichment, preconcentration, and isolation of pesticides and selected pollutants. Critical Reviews in Analytical Chemistry, 45(3), 270–287. https://doi.org/10.1080/10408347.2014.938148
  • Wen, T., Wang, M., Luo, M., Yu, N., Xiong, H., & Peng, H. (2019). A nanowell-based molecularly imprinted electrochemical sensor for highly sensitive and selective detection of 17β-estradiol in food samples. Food Chemistry, 297, 124968. https://doi.org/10.1016/j.foodchem.2019.124968
  • Woźnica, M., Sobiech, M., & Luliński, P. (2023). A fusion of molecular imprinting technology and siloxane chemistry: A way to advanced hybrid nanomaterials. Nanomaterials: Overview and Historical Perspectives, 13(2), 248. https://doi.org/10.3390/nano13020248
  • Wu, L., Hu, M., Li, Z., Song, Y., Yu, C., Zhang, Y., Zhang, H., Yu, A., Ma, Q., & Wang, Z. (2015). Determination of triazine herbicides in fresh vegetables by dynamic microwave-assisted extraction coupled with homogeneous ionic liquid microextraction high performance liquid chromatography. Analytical and Bioanalytical Chemistry, 407(6), 1753–1762. https://doi.org/10.1007/s00216-014-8393-4
  • Wulff, G., & Vietmeier, J. (1989). Enzyme‐analogue built polymers, 26. Enantioselective synthesis of amino acids using polymers possessing chiral cavities obtained by an imprinting procedure with template molecules. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 190(7), 1727–1735. https://doi.org/10.1002/macp.1989.021900724
  • Xin, J., Qiao, X., Xu, Z., & Zhou, J. (2013). Molecularly imprinted polymer as sorbent for solid-phase extraction coupling to gas chromatography for the simultaneous determination of trichlorfon and monocrotophos residues in vegetables. Food Analytical Methods, 6(1), 274–281. https://doi.org/10.1007/s12161-012-9432-4
  • Xu, X., & Liang, S. (2019). Molecularly imprinted solid‐phase extraction method for the gas chromatographic analysis of organochlorine fungicides in ginseng. Journal of Separation Science, 42(7), 1393–1403. https://doi.org/10.1002/jssc.201800765
  • Xu, S., & Lu, H. (2015). One-pot synthesis of mesoporous structured ratiometric fluorescence molecularly imprinted sensor for highly sensitive detection of melamine from milk samples. Biosensors and Bioelectronics, 73, 160–166. https://doi.org/10.1016/j.bios.2015.05.064
  • Yang, Y., & Shen, X. (2022). Preparation and application of molecularly imprinted polymers for flavonoids: Review and perspective. Molecules, 27(21), 7355. https://doi.org/10.3390/molecules27217355
  • Yan, H., Qiao, F., & Row, K. H. (2009). Molecularly imprinted monolithic column for selective on-line extraction of enrofloxacin and ciprofloxacin from urine. Chromatographia, 70(7–8), 1087–1093. https://doi.org/10.1365/s10337-009-1244-3
  • Yousefi, M., Rahimi-Nasrabadi, M., Mirsadeghi, S., & Pourmortazavi, S. M. (2021). Supercritical fluid extraction of pesticides and insecticides from food samples and plant materials. Critical Reviews in Analytical Chemistry, 51(5), 482–501. https://doi.org/10.1080/10408347.2020.1743965
  • Zeng, G., Liu, Y., Ma, X., & Fan, Y. (2021). Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water. Frontiers of Environmental Science & Engineering, 15(5), 1–12. https://doi.org/10.1007/s11783-021-1395-5
  • Zhang, K., Guan, X., Qiu, Y., Wang, D., Zhang, X., & Zhang, H. (2016). A pH/glutathione double responsive drug delivery system using molecular imprint technique for drug loading. Applied Surface Science, 389, 1208–1213. https://doi.org/10.1016/j.apsusc.2016.08.107
  • Zhang, L.-P., Wang, X.-L., Pang, Q.-Q., Huang, Y.-P., Tang, L., Chen, M., & Liu, Z.-S. (2017). Solvent-responsive floating liquid crystalline-molecularly imprinted polymers for gastroretentive controlled drug release system. International Journal of Pharmaceutics, 532(1), 365–373. https://doi.org/10.1016/j.ijpharm.2017.09.008
  • Zhang, W., Zhao, Q., Zhou, X., Chen, J., Liu, Y., Tang, L., Min, J., Yan, D., Xu, C., Li, B., & Yang, X. (2022). A deep eutectic solvent magnetic molecularly imprinted polymer for extraction of laminarin from seaweeds. Microchimica Acta, 189(10), 399. https://doi.org/10.1007/s00604-022-05488-y
  • Zhao, F., She, Y., Zhang, C., Cao, X., Wang, S., Zheng, L., Jin, M., Shao, H., Jin, F., & Wang, J. (2017). Selective solid-phase extraction based on molecularly imprinted technology for the simultaneous determination of 20 triazole pesticides in cucumber samples using high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 1064, 143–150. https://doi.org/10.1016/j.jchromb.2017.08.022
  • Zhong, S., Zhou, C., Zhang, X., Zhou, H., Li, H., Zhu, X., & Wang, Y. (2014). A novel molecularly imprinted material based on magnetic halloysite nanotubes for rapid enrichment of 2, 4-dichlorophenoxyacetic acid in water. Journal of Hazardous Materials, 276, 58–65. https://doi.org/10.1016/j.jhazmat.2014.05.013
  • Zhu, X., Cai, J., Yang, J., Su, Q., & Gao, Y. (2006). Films coated with molecularly imprinted polymers for the selective stir bar sorption extraction of monocrotophos. Journal of Chromatography A, 1131(1–2), 37–44. https://doi.org/10.1016/j.chroma.2006.07.041
  • Zhu, X., Yang, J., Su, Q., Cai, J., & Gao, Y. (2005). Selective solid-phase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples. Journal of Chromatography, 1092(2), 161–169. https://doi.org/10.1016/j.chroma.2005.07.037
  • Zinedine, A., Blesa, J., Mahnine, N., El Abidi, A., Montesano, D., & Mañes, J. (2010). Pressurized liquid extraction coupled to liquid chromatography for the analysis of ochratoxin a in breakfast and infants cereals from Morocco. Food Control, 21(2), 132–135. https://doi.org/10.1016/j.foodcont.2009.04.009