Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 10, 2024 - Issue 1
931
Views
0
CrossRef citations to date
0
Altmetric
Waste Management

Sargassum-to-energy: A review of bioethanol production and its significance in Ghana

, &
Article: 2299541 | Received 30 Sep 2023, Accepted 19 Dec 2023, Published online: 30 Jan 2024

References

  • Addico, G. N. D., & de Graft Johnson, K. A. (2016). Preliminary investigation into chemical composition of the invasive brown seaweed sargassum along the West Coast of Ghana. African Journal of Biotechnology, 15, 2184–16. .
  • Agboola, A. A., Ishola, N. B., & Betiku, E. (2023). Bioethanol production via fermentation: Microbes, modelling and optimization. In I. I. A. I. In: Betiku & I. I. A. I. M. Ishola (Eds.), Bioethanol: A Green Energy Substitute for fossil fuels. Green Energy and technology. Springer. https://doi.org/10.1007/978-3-031-36542-3_8
  • Alalwan, H. A., Alminshid, A. H., & Aljaafari, H. A. S. (2019). Promising evolution of biofuel generations. Renewable Energy Focus, 28, 127–139. https://doi.org/10.1016/j.ref.2018.12.006
  • Alfonsín, V., Maceiras, R., & Gutiérrez, C. (2019). Bioethanol production from industrial algae waste. Waste Management, 87, 791–797. https://doi.org/10.1016/j.wasman.2019.03.019
  • Amador-Castro, F., García-Cayuela, T., Alper, H. S., Rodriguez-Martinez, V., & Carrillo-Nieves, D. (2021). Valorization of Pelagic Sargassum Biomass into sustainable applications: Current trends and challenges. Journal of Environmental Management, 283, 112013. https://doi.org/10.1016/j.jenvman.2021.112013
  • Ameka, G. K., Doamekpor, L. K., Amadu, A. A., & Amamoo, A. P. (2019). Production of biodiesel from Marine macroalgae occurring in the Gulf of Guinea, off the coast of Ghana. Ghana Journal of Science, 60, 50–58. https://doi.org/10.4314/gjs.v60i1.5
  • Amo-Aidoo, A., Hensel, O., Korese, J. K., Abunde Neba, F., & Sturm, B. (2021). A framework for optimization of energy efficiency and integration of hybridized-solar energy in agro-industrial plants: Bioethanol production from cassava in Ghana. Energy Reports, 7, 1501–1519. https://doi.org/10.1016/j.egyr.2021.03.008
  • Anon. (2022). Nzema youth express concerns over invasion of seaweeds. Retrieved October 6, 2022. www.newsghana.com.gh
  • Anon. (2023). National energy transition framework (2022-2070). Retrieved August 7, 2023. www.energymin.gov.gh
  • Aparicio, E., Rodríguez-Jasso, R. M., Pinales-Márquez, C. D., Loredo-Treviño, A., Robledo-Olivo, A., Aguilar, C. N. … Ruiz, H. A. (2021). High-pressure technology for sargassum spp biomass pretreatment and fractionation in the third generation of bioethanol production. Bioresource Technology, 329, 124935. https://doi.org/10.1016/j.biortech.2021.124935
  • Ardalan, Y., Jazini, M., & Karimi, K. (2018). Sargassum angustifolium Brown Macroalga as a high potential substrate for alginate and ethanol production with minimal nutrient requirement. Algal Research, 36, 29–36. https://doi.org/10.1016/j.algal.2018.10.010
  • Ashokkumar, V., Salim, M. R., Salam, Z., Sivakumar, P., Chong, C. T., Elumalai, S., Suresh, V., & Ani, F. N. (2017). Production of liquid Biofuels (biodiesel and Bioethanol) from brown Marine Macroalgae Padina Tetrastromatica. Energy Conversion and Management, 135, 351–361. https://doi.org/10.1016/j.enconman.2016.12.054
  • Asumadu-Sarkodie, S., & Owusu, P. A. (2016). A review of ghana’s energy sector national energy statistics and policy framework. Cogent Engineering, 3(1), 1155274. https://doi.org/10.1080/23311916.2016.1155274
  • Ayyanna, C., Sujatha, K., Mohanthy, S. K., Rajangam, J., Sudha, B. N., & Raghavendra, H. G. (2023). Bioethanol production. IntechOpen, 1–11. https://doi.org/10.72/intechopen.109097
  • Azizi, N., Najafpour, G., & Younesi, H. (2017). Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator. International Journal of Biological Macromolecules, 101, 1029–1040. https://doi.org/10.1016/j.ijbiomac.2017.03.184
  • Bahadar, A., & Khan, M. B. (2013). Progress in energy from microalgae: A review. Renewable and Sustainable Energy Reviews, 27, 128–148. https://doi.org/10.1016/j.rser.2013.06.029
  • Balboa, E. M., Gallego-Fábrega, C., Moure, A., & Domínguez, H. (2015). Study of the seasonal variation on proximate composition of oven-dried sargassum muticum biomass collected in Vigo Ria, Spain. Journal of Applied Phycology, 28(3), 1943–1953. https://doi.org/10.1007/s10811-015-0727-x
  • Balwan, W. K., & Kour, S. (2021). A systematic review of biofuels: The cleaner energy for cleaner environment. Indian Journal of Scientific Research, 12(1), 135–142. https://doi.org/10.32606/IJSR.V12.I1.00025
  • Bambase, M. E. J., Demafelis, R. B., Borines, M. G., Gatdula, K. M., Alquiros, A. J. A., & Atienza, G. E. A. (2015). Ethanol production from Mannitol of Sargassum using Saccharomyces cerevisiae 2055. Philippine Journal of Crop Science, 40, 76–85.
  • Borines, M. G., de Leon, R. L., & Cuello, J. L. (2013). Bioethanol production from the macroalgae sargassum spp. Bioresource Technology, 138, 22–29. https://doi.org/10.1016/j.biortech.2013.03.108
  • Bušić, A., Marđetko, N., Kundas, S., Morzak, G., Belskaya, H., Šantek, M. I., Komes, D., Novak, S., & Šantek, B. (2018). Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technology and Biotechnology, 56(3), 289–311. https://doi.org/10.17113/ftb.56.03.18.5546
  • Ceballos, R. M. (2018). Bioethanol and natural resources: Substrates, chemistry and engineered systems. Taylor & Francis Group. https://doi.org/10.1201/9781315154299
  • Chaldun, E. R., Andayani, D. G. S., & Handayani, T. (2022). Physicochemical Properties of Sodium Alginate from Brown Algae Sargassum Aquifolium and Sargassum cinereum. IOP Conference Series: Earth and Environmental Science, 1201(1), 012097. https://doi.org/10.1088/1755-1315/1201/1/012097
  • Chen, J., Wu, A., Yang, M., Ge, Y., Pristijono, P., Li, J., & Mi, H. (2021). Characterization of Sodium Alginate-Based Films Incorporated with thymol for fresh-cut apple packaging. Food Control, 126, 108063. https://doi.org/10.1016/j.foodcont.2021.108063
  • Chiaramonti, D., Prussi, M., Buffi, M., Rizzo, A. M., & Pari, L. (2017). “Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production. Applied Energy, 185, 963–972. https://doi.org/10.1016/j.apenergy.2015.12.001
  • Dave, N., Selvaraj, R., Varadavenkatesan, T., & Vinayagam, R. (2019). A critical review on production of bioethanol from Macroalgal Biomass. Algal Research, 42, 101606. https://doi.org/10.1016/j.algal.2019.101606
  • Davis, D., Simister, R., Campbell, S., Marston, M., Bose, S., McQueen-Mason, S. J., Gomez, L. D., Gallimore, W. A. & Tonon, T. (2021). Biomass composition of the golden tide pelagic seaweeds sargassum fluitans and S. natans (morphotypes I and VIII) to inform valorisation pathways. Science of the Total Environment, 762 143134 https://doi.org/10.1016/j.scitotenv.2020.143134
  • Davis, D., Simister, R., Campbell, S., Marston, M., Bose, S., McQueen-Mason, S. J., & Tonon, T. (2020). Biomass composition of the golden tide pelagic seaweeds sargassum fluitans and S. natans (morphotypes I and VIII) to inform valorisation pathways. Science of the Total Environment, 762, 143134. https://doi.org/10.1016/j.scitotenv.2020.143134
  • De Farias Silva, C. E., & Bertucco, A. (2016). Bioethanol from microalgae and cyanobacteria: A review and technological outlook. Process Biochemistry, 51(11), 1833–1842. https://doi.org/10.1016/j.procbio.2016.02.016
  • Del Río, P. G., Gullón, B., Pérez-Pérez, A., Romaní, A., & Garrote, G. (2021). Microwave hydrothermal processing of the invasive macroalgae sargassum muticum within a green biorefinery scheme. Bioresources Technology, 340, 125733. https://doi.org/10.1016/j.biortech.2021.125733
  • Durbha, S. R., Tavva, S. S. M. D., Guntuku, G., Tadimalla, P., Yechuri, V. R., Nittala, S. R., & Muktinutalapati, V. S. R. (2016). Ethanol production from the Biomass of Two Marine Algae, padina tetrastromatica and Sargassum vulgare. Columbia International Publishing American Journal of Biomass and Bioenergy, 5(1), 31–42. https://doi.org/10.7726/ajbb.2016.1003
  • Edeh, I. (2020). Bioethanol production: An overview. IntechOpen, 1–24. https://doi.org/10.5772/intechopen.94895
  • Ferdeș, M., Dincă, M. N., Moiceanu, G., Zăbavă, B. Ș., & Paraschiv, G. (2020). Microorganisms and enzymes used in the biological pretreatment of the substrate to enhance biogas production: A review. Sustainability, 12(17), 7205. https://doi.org/10.3390/su12177205
  • Fischer, J., Lopes, V. S., Cardoso, S. L., Coutinho Filho, U., & Cardoso, V. L. (2017). Machine Learning Techniques Applied to Lignocellulosic Ethanol in Simultaneous Hydrolysis and Fermentation. Brazilian Journal of Chemical Engineering, 34(1), 53–63. https://doi.org/10.1590/0104-6632.20170341s20150475
  • Flórez-Fernández, N., Illera, M., Sánchez, M., Lodeiro, P., Dolores Torres, M., López-Mosquera, E. M., de Vicente, M. S., & Domínguez, H. (2021), Integral Valorization of Sargassum muticum in Biorefineries. Chemical Engineering Journal, 404. . https://doi.org/10.1016/j.cej.2020.125635
  • Gatdula, K. M., Rex, B., Demafelis, J. L., Movillon, D. E. S., Sanchez, K. A. H., & Richard, V. M. J. (2018). Energetics and environmental assessment of a commercial scale bioethanol processing plant using Sargassum spp. Philippine Journal of Crop Science, PJCS, 10–20.
  • Gengiah, K., Rajendran, N., Al-Ghanim, K. A., Govindarajan, M., & Gurunathan, B. (2023). Process and technoeconomic analysis of bioethanol production from residual biomass of marine macroalgae ulva lactuca. Science of the Total Environment, 868, 1–8. https://doi.org/10.1016/j.scitotenv.2023.161661
  • Ghadiryanfar, M., Rosentrater, K. A., Keyhani, A., & Omid, M. (2016). A review of macroalgae production, with potential applications in biofuels and bioenergy. Renewable and Sustainable Energy Reviews, 54, 473–481. https://doi.org/10.1016/j.rser.2015.10.022
  • Godvin, S. V., Dinesh, K. M., Arulazhagan, P., Amit, K. B., Poornachander, G., & Rajesh, B. (2021). Biofuel production from Macroalgae: Present scenario and future scope. Bioengineered, 12(2), 9216–9238. https://doi.org/10.1080/21655979.2021.1996019
  • Gómez, A., Rodrigues, M., Montañés, C., Dopazo, C., & Fueyo, N. (2011). The technical potential of first-generation Biofuels obtained from energy crops in Spain. Biomass and Bioenergy, 35(5), 2143–2155. https://doi.org/10.1016/j.biombioe.2011.02.009
  • Gruduls, A., Maurers, R., & Romagnoli, F. (2018). Baltic Sea seaweed biomass pretreatment: Effect of combined CO2 and thermal treatment on biomethane potential. Energy Procedia, 147, 607–613. https://doi.org/10.1016/j.egypro.2018.07.078
  • Guo, M., Song, W., & Buhain, J. (2015). Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews, 42, 712–725. https://doi.org/10.1016/j.rser.2014.10.013
  • Halima, R., & Archna, N. (2023). Nano-Enzymatic Hydrolysis and fermentation of waste starch sources for bioethanol production: An optimization study. Journal of Mines, Metals and Fuels, 71, 439–445. https://doi.org/10.18311/jmmf/2023/33756
  • Hasan-Tuaputty. (2020). Yeast concentration, pH, and fermentation time on the production and concentration of bioethanol made from sargassum crassifolium as a renewable energy source. Biosel Biology Science and Education, 9(1), 50. https://doi.org/10.33477/bs.v9i1.1317
  • Hasnain, M. S., Jameel, E., Mohanta, B., Dhara, A. K., Alkahtani, S., & Nayak, A. K. (2020). Alginates: Sources, structure, and properties. Alginates in Drug Delivery, 1–17. https://doi.org/10.1016/b978-0-12-817640-5.00001-7
  • Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310–318. https://doi.org/10.1016/j.biortech.2018.04.099
  • Hebbale, D., Chandran, M. D. S., Joshi, N. V., & Ramachandra, T. V. (2017). Energy and food security from Macroalgae. Journal of Biodiversity, 8(1), 1–11. https://doi.org/10.1080/09766901.2017.1351511
  • Hoang, A. T., & Pham, V. V. (2021). 2-methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renewable and Sustainable Energy Reviews, 148, 111265. https://doi.org/10.1016/j.rser.2021.111265
  • Hoang, A. T., Tran, Q. V., Al-Tawaha, A. R. M. S., Pham, V. V., & Nguyen, X. P. (2019). Comparative analysis on performance and emission characteristics of an In-Vietnam popular 4-stroke motorcycle engine running on biogasoline and mineral gasoline. Renewable Energy Focus, 28, 47–55. https://doi.org/10.1016/j.ref.2018.11.001
  • Hong, I. K., Jeon, H., & Lee, S. B. (2014). Comparison of red, Brown and green seaweeds on Enzymatic Saccharification Process. Journal of Industrial and Engineering Chemistry, 20(5), 2687–2691. https://doi.org/10.1016/j.jiec.2013.10.056
  • Hoppe, F., Burke, U., Thewes, M., Heufer, A., Kremer, F., & Pischinger, S. (2016). Tailor-made fuels from biomass: Potentials of 2-butanone and 2-methylfuran in direct injection spark ignition engines. Fuel, 167, 106–117. https://doi.org/10.1016/j.fuel.2015.11.039
  • Jambo, S. A., Abdulla, R., Mohd Azhar, S. H., Marbawi, H., Gansau, J. A., & Ravindra, P. (2016). A review on third generation bioethanol feedstock. Renewable and Sustainable Energy Reviews, 65, 756–769. https://doi.org/10.1016/j.rser.2016.07.064
  • Jang, J., Cho, Y., Jeong, G., & Kim, S. (2012). Optimization of Saccharification and ethanol production by simultaneous Saccharification and fermentation (SSF) from seaweed saccharina japonica. Bioprocess Biosystems and Engineering, 35(1–2), 11–18. https://doi.org/10.1007/s00449-011-0611-2
  • Jeyakumar, N., Hoang, A. T., Niˇzeti, S., Balasubramanian, D., Kamaraj, S., Pandian, P. L., Sirohi, R., Nguyen, P. Q. P., & Nguyen, X. P. (2022). Experimental investigation on simultaneous production of bioethanol and biodiesel from macro-algae. Fuel, 329, 125362. https://doi.org/10.1016/j.fuel.2022.125362
  • Jężak, S., Dzida, M., & Zorębski, M. (2016). High pressure physicochemical properties of 2-methylfuran and 2,5-dimethylfuran – second generation biofuels. Fuel, 184, 334–343. https://doi.org/10.1016/j.fuel.2016.07.025
  • Kadimpati, K. K., Thadikamala, S., Devarapalli, K., Banoth, L., & Uppuluri, K. B. (2021). Characterization and Hydrolysis Optimization of Sargassum Cinereum for the fermentative production of 3G bioethanol. Biomass Conversion and Biorefinery, 13(3), 1831–1841. https://doi.org/10.1007/s13399-020-01270-3
  • Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial cell factories, 17(1), 36. https://doi.org/10.1186/s12934-018-0879-x
  • Khuong, L. S., Masjuki, H. H., Zulkifli, N. W. M., Niza Mohamad, E., Kalam, M. A., Abdullah, A., Arslan, A., Mosarof, M. H., Syahira, A. Z., & Jamshaid, M. (2017). Effect of gasoline–bioethanol blends on the properties and lubrication characteristics of commercial engine oil. RSC Advances, 7(25), 15005–15019. https://doi.org/10.1039/C7RA00357A
  • Kim, S. W., Hong, C.-H., Jeon, S.-W., & Shin, H.-J. (2015). High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes. Bioresource Technology, 196, 634–641. https://doi.org/10.1016/j.biortech.2015.08.016
  • Kraan, S. (2010). Mass-cultivation of Carbohydrate Rich Macroalgae, a possible solution for sustainable biofuel production. Mitigation and Adaptation Strategies for Global Change, 18(1), 27–46. https://doi.org/10.1007/s11027-010-9275-5
  • Kumar, M. D., Kavitha, S., Tyagi, V. K., Rajkumar, M., Bhatia, S. K., Kumar, G., & Banu, J. R. (2021). Macroalgae-Derived Biohydrogen Production: Biorefinery and Circular Bioeconomy. Biomass Conversion and Biorefinery, 12(3), 769–791. https://doi.org/10.1007/s13399-020-01187-x
  • Kumar, P. K., Krishna, S. V., Verma, K., Pooja, K., Bhagawan, D., Srilatha, K., & Himabindu, V. (2018). Bio oil production from microalgae via hydrothermal liquefaction technology under subcritical water conditions. Journal of Microbiological Methods, 153, 108–117. https://doi.org/10.1016/j.mimet.2018.09.014
  • Kusuma Wardani, A., & Herrani, R. (2019). Bioethanol from Sargassum sp using acid hydrolysis and fermentation method using microbial association. Journal of Physics. Conference Series, 1241(1), 012008. https://doi.org/10.1088/1742-6596/1241/1/012008
  • Lamptey, B. L., Sackey, A. D., & Kpabitey, M. K. (2022). Outlining the causes and effects of algae blooms on Ghana’s West Coast. Journal of Education and Psychological Research, 4(2), 350–360.
  • Limayem, A., & Ricke, S. C. (2012). Lignocellulosic Biomass for Bioethanol Production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449–467. https://doi.org/10.1016/j.pecs.2012.03.002
  • López-Sosa, L. B., Alvarado-Flores, J. J., Corral-Huacuz, J. C., Aguilera-Mandujano, A., Rodríguez-Martínez, R. E., Guevara-Martínez, S. J., Ávalos-Rodríguez, M. L., Morales-Máximo, M., Zárate-Medina, J., Ávalos-Rodríguez, M. L., & Morales-Máximo, M. (2020). A prospective study of the exploitation of pelagic sargassum spp. As a Solid Biofuel Energy source. Applied Sciences, 10(23), 8706. https://doi.org/10.3390/app10238706
  • Lugani, Y., Rai, R., Prabhu, A. A., Maan, P., Hans, M., Kumar, V., Kumar, S., Chandel, A. K., & Sengar, R. S. (2020). Recent advances in bioethanol production from Lignocelluloses: A comprehensive review with a Focus on Enzyme Engineering and Designer biocatalysts. Biofuel Research Journal, 7(4), 1267–1295. https://doi.org/10.18331/BRJ2020.7.4.5
  • Marinho-Soriano, E., Fonseca, P. C., Carneiro, M. A. A., & Moreira, W. S. C. (2006). Seasonal variation in the chemical composition of two tropical seaweeds. Bioresource Technology, 97(18), 2402–2406. https://doi.org/10.1016/j.biortech.2005.10.014
  • Matanjun, P., Mohamed, S., Mustapha, N. M., & Muhammad, K. (2009). Nutrient content of tropical edible seaweeds, eucheuma cottonii, caulerpa lentillifera and Sargassum polycystum. Journal of Applied Phycology, 21(1), 75–80. https://doi.org/10.1007/s10811-008-9326-4
  • Milledge, J., & Harvey, P. (2016). Golden tides: Problem or golden opportunity? The valorisation of Sargassum from beach inundations. Journal of Marine Science and Engineering, 4(3), 60. https://doi.org/10.3390/jmse4030060
  • Mishra, S., Kumari, N., Singh, V. K., & Sinha, R. P. (2023). Cyanobacterial Biofuel: A platform for Green Energy “. Advances in Environmental and Engineering Research, 4(3), 1–25. https://doi.org/10.21926/aeer.2303041
  • Miyuranga, K. V. A., De Silva, D. J., Arachchige, U. S. P. R., Jayasinghe, R. A., & Weerasekara, N. A. (2022). Comparison of the properties of biodiesel-bioethanol-diesel blended fuel. Asian Journal of Chemistry, 34(7), 1809–181. https://doi.org/10.14233/ajchem.2022.23767
  • Mohammed, A., Rivers, A., Stuckey, D. C., & Ward, K. (2020). Alginate extraction from sargassum seaweed in the Caribbean Region: Optimization using response surface methodology. Carbohydrate Polymers, 245, 116419. https://doi.org/10.1016/j.carbpol.2020.116419
  • Mohapatra, S., Mishra, C., Behera, S. S., & Thatoi, H. (2017). Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from Grass Biomass – a review. Renewable and Sustainable Energy Reviews, 78, 1007–1032. https://doi.org/10.1016/j.rser.2017.05.026
  • Mohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10, 52–61. https://doi.org/10.1016/j.bbrep.2017.03.003
  • Monroy-Velázquez, L. V., Rodríguez-Martínez, R. E., van Tussenbroek, B. I., Aguiar, T., Solís-Weiss, V., & Briones-Fourzán, P. (2019). Motile macrofauna Associated with Pelagic Sargassum in a Mexican Reef Lagoon. Journal of Environmental Management, 252, 109650. https://doi.org/10.1016/j.jenvman.2019.109650
  • Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. https://doi.org/10.1016/j.rser.2009.10.003
  • Nayak, A. K., Ahmed, S. A., Tabish, M., & Hasnain, M. S. (2019). Natural polysaccharides in tissue engineering applications. Natural Polysaccharides in Drug Delivery and Biomedical Applications, 531–548. https://doi.org/10.1016/b978-0-12-817055-7.00023-6
  • Nigam, P. S., & Singh, A. (2011). Production of Liquid Biofuels from Renewable Resources. Progress in Energy and Combustion Science, 37(1), 52–68. https://doi.org/10.1016/j.pecs.2010.01.003
  • Niphadkar, S., Bagade, P., & Ahmed, S. (2017). Bioethanol production: Insight into past, present and future perspectives. Biofuels, 9(2), 229–238. https://doi.org/10.1080/17597269.2017.1334338
  • Nitsche, M., & Gbadamosi, R. (2017). Extractive and azeotropic distillation. Practical Column Design Guide, 153–164. https://doi.org/10.1007/978-3-319-51688-2_5
  • Nomura, M., Kamogawa, H., Susanto, E., Kawagoe, C., Yasui, H., Saga, N., Hosokawa, M., & Miyashita, K. (2012). Seasonal variations of total lipids, fatty acid composition, and fucoxanthin contents of sargassum horneri (Turner) and cystoseira hakodatensis (Yendo) from the Northern Seashore of Japan. Journal of Applied Phycology, 25(4), 1159–1169. https://doi.org/10.1007/s10811-012-9934-x
  • Offei, F., Mensah, M., & Kemausuor, F. (2019). Cellulase and acid-catalysed hydrolysis of Ulva Fasciata, Hydropuntia Dentata and sargassum vulgare for bioethanol production. Applied Sciences, 1(11). https://doi.org/10.1007/s42452-019-1501-5
  • Offei, F., Mensah, M., Thygesen, A., & Kemausuor, F. (2018). Seaweed bioethanol production: A process selection review on hydrolysis and fermentation. Fermentation, 4(4), 1–18. https://doi.org/10.3390/fermentation4040099
  • Oliveira, J. V., Alves, M. M., & Costa, J. C. (2015). Optimization of biogas production from sargassum sp. Using a design of experiments to assess the codigestion with glycerol and waste frying oil. Bioresources Technology, 175, 480–485. https://doi.org/10.1016/j.biortech.2014.10.121
  • Oo, N. M. M., & Kywe, T. T. (2019). Preparation of bioethanol from brown seaweed (sargassum sp.). International Journal of Trend in Scientific Research and Development, 3, 2273–2278. https://doi.org/10.31142/ijtsrd28011
  • Orozco-González, J. G., Amador-Castro, F., Gordillo-Sierra, A. R., García-Cayuela, T., Alper, H. S., & Carrillo-Nieves, D. (2022). Opportunities surrounding the use of sargassum biomass as precursor of biogas, bioethanol, and biodiesel production. Frontiers in Marine Science, 8, 1–11. https://doi.org/10.3389/fmars.2021.791054
  • Owusu, W. A., Marfo, S. A., & Andiappan, V. (2023). Artificial intelligence application in bioethanol production. International Journal of Energy Research, 2023, 1–8. https://doi.org/10.1155/2023/7844835
  • Oyesiku, O., & Egunyomi, A. (2014). Identification and chemical studies of pelagic masses of sargassum natans (Linnaeus) Gaillon and S. Fluitans (Borgessen) Borgesen (Brown Algae), found offshore in Ondo State Nigeria. African Journal of Biotechnology, 13(10), 1188–1193. https://doi.org/10.5897/AJB2013.12335
  • Pangestuti, R., & Kim, S.-K. (2015). Seaweed proteins, peptides, and amino acids. Seaweed Sustainability, 125–140. https://doi.org/10.1016/b978-0-12-418697-2.00006-4
  • Pelizan, L., Lickteig, L., & Rahnema, A. (2019). Biofuel production in Ghana: Exploring the opportunity. IESE OP-320-E, 1–28. https://doi.org/10.15581/018
  • Peng, L., Fu, D., Chu, H., Wang, Z., & Qi, H. (2019). Biofuel Production from Microalgae: A Review. Environmental Chemistry Letters, 18(2), 285–297. https://doi.org/10.1007/s10311-019-00939-0
  • Qian, Y., Zhu, L., Wang, Y., & Lu, X. (2015). Recent progress in the development of biofuel 2,5-dimethylfuran. Renewable and Sustainable Energy Reviews, 41, 633–646. https://doi.org/10.1016/j.rser.2014.08.085
  • Rachmayanti, A., Putri, A. M. S., & Fadli, A. I. (2019). Separate saccharification and Fermentation for Bioethanol Production from raw seaweed sargassum sp. Marinade, 2(01), 19–28. https://doi.org/10.31629/marinade.v2i01.1253
  • Raheem, A., Wan Azlina, W. A. K. G., Taufiq Yap, Y. H., Danquah, M. K., & Harun, R. (2015). Thermochemical Conversion of Microalgal Biomass for Biofuel Production. Renewable and Sustainable Energy Reviews, 49, 990–999. https://doi.org/10.1016/j.rser.2015.04.186
  • Rajkumar, R., Yaakob, Z., & Takriff, M. S. (2013). Potential of micro and macro algae for biofuel production: A brief review. BioResources, 9(1). https://doi.org/10.15376/biores.9.1.1606-1633
  • Ramachandra, T. V., & Hebbale, D. (2020). Bioethanol from Macroalgae: Prospects and challenges. Renewable and Sustainable Energy Reviews, 117, 109479. https://doi.org/10.1016/j.rser.2019.109479
  • Rastogi, M., & Shrivastava, S.(2018). Current methodologies and advances in bioethanol production. Journal of Biotechnology & Bioresearch, 1, 1–8.
  • Ravanal, M. C., Camus, C., Buschmann, A. H., Gimpel, J., Olivera-Nappa, Á., Salazar, O., & Lienqueo, M. E. (2019). Production of bioethanol from brown algae. Advances in Feedstock Conversion Technologies for Alternative Fuels and Bioproducts, 69–88. r. https://doi.org/10.1016/b978-0-12-817937-6.00004-7
  • Ravanal, M. C., Pezoa-Conte, R., von Schoultz, S., Hemming, J., Salazar, O., Anugwom, I., Jogunola, O., Mäki-Arvela, P., Willför, S., Mikkola, J. P., & Lienqueo, M. E.(2016). Comparison of different types of pretreatment and Enzymatic Saccharification of Macrocystis pyrifera for the Production of Biofuel. Algal Research, 13, 141–147.
  • Ren, R., Han, X., Zhang, H., Lin, H., Zhao, J., Zheng, Y., & Wang, H. (2018). High yield bio-oil production by hydrothermal liquefaction of a hydrocarbon-rich microalgae and biocrude upgrading. Carbon Resources Conversion, 1(2), 153–159. https://doi.org/10.1016/j.crcon.2018.07.008
  • Ritslaid, K., Kuut, A., & Olt, J. (2010). State of the art in bioethanol production. Agronomy Research, 8(1), 236–254.
  • Rodrigues, D., Freitas, A. C., Pereira, L., Rocha-Santos, T. A. P., Vasconcelos, M. W., Roriz, M., Gomes, A. M. P., & Duarte, A. C. (2015). Chemical Composition of Red, Brown and green macroalgae from Buarcos Bay in Central West Coast of Portugal. Food Chemistry, 183, 197–207. https://doi.org/10.1016/j.foodchem.2015.03.057
  • Saini, R. K., & Keum, Y.-S. (2018). Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance — a review. Life Sciences, 203, 255–267. https://doi.org/10.1016/j.lfs.2018.04.049
  • Sakharkar, P. A. (2018). Treatment of Food Waste for Bioethanol Production using pervaporation separation technology. International Journal for Research in Applied Science and Engineering Technology, 6(1), 2568–2572. https://doi.org/10.22214/ijraset.2018.1353
  • Sambusiti, C., Bellucci, M., Zabaniotou, A., Beneduce, L., & Monlau, F. (2015). Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review. Renewable and Sustainable Energy Reviews, 44, 20–36. https://doi.org/10.1016/j.rser.2014.12.013
  • Sankaran, R., Andres Parra Cruz, R., Pakalapati, H., Loke Show, P., Chuan Ling, T., Wei-Hsin, C., & Ao, Y. (2019). Recent Advances in the Pretreatment of Microalgal and Lignocellulosic Biomass: A Comprehensive Review. Bioresource Technology, 298, 122476. https://doi.org/10.1016/j.biortech.2019.122476
  • Saravanan, K., Duraisamy, S., Ramasamy, G., Kumarasamy, A., & Balakrishnan, S. (2018). Evaluation of the saccharification and fermentation process of two different seaweeds for an ecofriendly bioethanol production. Biocatalysis and Agricultural Biotechnology, 14, 444–449. https://doi.org/10.1016/j.bcab.2018.03.017
  • Schenk, P., Thomas-Hall, S., Stephens, E., Marx, U., Mussgnug, J., & Posten, C. (2008). Second generation biofuels: High efficiency microalgae for biodiesel production. BioEnergy Research, 1(1), 20–43. https://doi.org/10.1007/s12155-008-9008-8
  • Sebayang, A. H., Masjuki, H. H., Ong, H. C., Dharmaa, S., Silitongaa, A. S., Kusumoa, F., & Milano, J. (2017). Optimization of bioethanol production from sorghum grains using artificial neural networks integrated with ant colony. Industrial Crops and Products, 97, 146–155. https://doi.org/10.1016/j.indcrop.2016.11.064
  • Segbefia, A. Y., Barnes, V. R., Akpalu, L. A., & Mensah, M. (2018). Environmental Location Assessment for Seaweed Cultivation in Ghana. International Journal of Applied Geospatial Research, 9(1), 51–64. https://doi.org/10.4018/ijagr.2018010104
  • Senatore, A., Dalena, F., & Basile, A. (2019). Novel bioethanol production processes and purification technology using membranes. Catalysis, Green Chemistry and Sustainable Energy, 359–384. https://doi.org/10.1016/b978-0-444-64337-7.00019-7
  • Shuping, Z., Yulong, W., Mingde, Y., Kaleem, I., Chun, L., & Tong, J. (2010). Production and characterization of bio-oil from hydrothermal liquefaction of microalgae dunaliella tertiolecta cake. Energy, 35(12), 5406–5411. https://doi.org/10.1016/j.energy.2010.07.013
  • Silalertruksa, T., Gheewala, S. H., Hünecke, K., & Fritsche, U. R. (2012). Biofuels and employment effects: Implications for Socioeconomic Development in Thailand. Biomass & bioenergy, 46, 409–418. https://doi.org/10.1016/j.biombioe.2012.07.019
  • Singh, A., & Olsen, S. I. (2011). A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy, 88(10), 3548–3555. https://doi.org/10.1016/j.apenergy.2010.12.012
  • Sirajunnisa, A. R., & Surendhiran, D. (2016). Algae – a quintessential and positive resource of bioethanol production: A comprehensive review. Renewable and Sustainable Energy Reviews, 66, 248–267. https://doi.org/10.1016/j.rser.2016.07.024
  • Soliman, R. M., Younis, S. A., El-Gendy, N. S., Mostafa, S. S. M., El-Temtamy, S. A., & Hashim, A. I. (2018). Batch bioethanol production via the biological and chemical saccharification of some Egyptian Marine macroalgae. Journal of Applied Microbiology, 125(2), 422–440. https://doi.org/10.1111/jam.13886
  • Stiger-Pouvreau, V., Bourgougnon, N., & Deslandes, E. (2016). Carbohydrates from seaweeds. Seaweed in Health and Disease Prevention, 223–274. https://doi.org/10.1016/b978-0-12-802772-1.00008-7
  • Surendhiran, D., & Sirajunnisa, A. R. (2019). Role of genetic engineering in bioethanol production from algae. Bioethanol Production from Food Crops, 361–381. https://doi.org/10.1016/b978-0-12-813766-6.00018-7
  • Tamayo, J. P., & Del Rosario, E. J. (2014). Chemical Analysis and utilisation of sargassum sp. As substrate for ethanol production. Iranica Journal of Energy & Environment, 5(2), 202–208. https://doi.org/10.5829/idosi.ijee.2014.05.02.12
  • Tavva, S. S. M. D., Deshpande, A., Durbha, S. R., Palakollu, V. A. R., Goparaju, A., Yechuri, U. R. V., & Muktinutalapati, V. S. R.(2016). Bioethanol production through separate hydrolysis and fermentation of parthenium hysterophorus biomass. Renewable Energy, 86, 1317–1323. https://doi.org/10.1016/j.renene.2015.09.074
  • Thompson, T. M., Young, B. R., & Baroutian, S. (2020). Pelagic sargassum for Energy and fertiliser production in the Caribbean: A case study on Barbados. Renewable and Sustainable Energy Reviews, 118, 109564. https://doi.org/10.1016/j.rser.2019.109564
  • Valencia, J. M. T., Demafelis, R. B., Borines, M. G., & Gatdula, K. M. (2015). Bioethanol potential of brown macroalgae sargassum spp. Philippine Journal of Crop Science, 40, 1–11.
  • van der Plank, S., Appeaning, K. A., Jayson-Quashigah, P.-N., & Sowah, W. N. A. (2023). Ghana’s fishing industry has a golden seaweed problem-how citizen science can help. Retrieved May 23, 2023. Www.Theconversation.com
  • Vohra, M., Manwar, J., Manmode, R., Padgilwar, S., & Patil, S.(2014). Bioethanol production: Feedstock and Current technologies. Journal of Environmental Chemical Engineering, 2, 573–584. https://doi.org/10.1016/j.jece.2013.10.013
  • Wei, N., Quarterman, J., & Jin, Y.-S. (2013). Marine macroalgae: An untapped resource for producing fuels and chemicals. Trends in Biotechnology, 31(2), 70–77. https://doi.org/10.1016/j.tibtech.2012.10.009
  • Widyaningrum, T., Prastowo, I., Parahadi, M., & Prasetyo, A. D. (2016). Production of Bioethanol from the hydrolysate of brown seaweed (sargassum crassifolium) using a naturally β-glucosidase producing yeast saccharomyces cereviceae JCM 3012. Biosciences, Biotechnology Research Asia, 13(3), 1333–1340. https://doi.org/10.13005/bbra/2274
  • Wu, C., Jiang, P., Guo, Y., Liu, J., Zhao, J., & Fu, H. (2017). Isolation and characterization of ulva prolifera Actin1 gene and function verification of the 5′ flanking region as a strong promoter. Bioengineered, 9(1), 124–133. https://doi.org/10.1080/21655979.2017.1325041
  • Yazdani, P., Zamani, A., Karimi, K., & Taherzadeh, M. J. (2015). Characterization of nizimuddinia zanardini Macroalgae Biomass Composition and its potential for biofuel production. Bioresource Technology, 176, 196–202. https://doi.org/10.1016/j.biortech.2014.10.141
  • Yeon, J. H., Lee, S. E., Choi, W. Y., Kang, D. H., Lee, H. Y., & Jung, K. H. (2011). Repeated-Batch Operation of Surface-Aerated Fermenter for bioethanol production from the hydrolysate of seaweed sargassum sagamianum. Journal of Microbiology and Biotechnology, 21(3), 323–331. https://doi.org/10.4014/jmb.1010.10057
  • Yuhendra, A. P., Farghali, M., Mohamed, I. M. A., Iwasaki, M., Tangtaweewipat, S., Ihara, I., Sakai, R., & Umetsu, K. (2021). Potential of biogas production from the anaerobic digestion of sargassum fulvellum macroalgae: Influences of mechanical, Chemical, and biological pretreatments. Biochemical Engineering Journal, 175, 108140. https://doi.org/10.1016/j.bej.2021.108140
  • Zabed, H. M., Akter, S., Yun, J., Zhang, G., Awad, F. N., Qi, X., & Sahu, J. N. (2019). Recent Advances in Biological Pretreatment of Microalgae and Lignocellulosic Biomass for Biofuel Production. Renewable and Sustainable Energy Reviews, 105, 105–128. https://doi.org/10.1016/j.rser.2019.01.048
  • Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71, 475–501. https://doi.org/10.1016/j.rser.2016.12.076
  • Zeng, G., You, H., Wang, K., Jiang, Y., Bao, H., Du, M., Chen, B., Ai, N., & Gu, Z. (2019). Semi‑simultaneous saccharification and Fermentation of Ethanol Production from Sargassum horneri and biosorbent Production from Fermentation residues. Waste and Biomass Valorization, 11(9), 4743–4755. https://doi.org/10.1007/s12649-019-00748-0
  • Zhao, Y., Bourgougnon, N., Lanoisellé, J.-L., & Lendormi, T. (2022). Biofuel production from seaweeds: A comprehensive review. Energies, 15(24), 9395. https://doi.org/10.3390/en15249395