Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 10, 2024 - Issue 1
711
Views
0
CrossRef citations to date
0
Altmetric
Waste Management

Waste management using marine microorganisms

& ORCID Icon
Article: 2324574 | Received 30 Nov 2023, Accepted 25 Feb 2024, Published online: 06 Mar 2024

References

  • Al-Agamy, M. H., Alhuzani, M. R., Kelany, M. S., Hamed, M. M., & Ktari, L. (2021, December 7). Production and partial characterization of α-amylase enzyme from marine actinomycetes. BioMed Research International, 2021, 1–18. https://doi.org/10.1155/2021/5289848
  • Ali, I., Peng, C., Khan, Z. M., Naz, I., & Sultan, M. (2018). An overview of heavy metal removal from wastewater using magnetotactic bacteria. Journal of Chemical Technology & Biotechnology, 93(10), 2817–2832. https://doi.org/10.1002/jctb.5648
  • Ameri, A. (2014). Marine microbial natural products. Jundishapur Journal of Natural Pharmaceutical Products, 9(4), e24716. https://doi.org/10.17795/jjnpp-24716
  • Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977–1984. 1526. https://doi.org/10.1098/rstb.2008.0304
  • Atanasova, N., Stoitsova, S., Paunova-Krasteva, T., & Kambourova, M. (2021). Plastic degradation by Extremophilic Bacteria. International Journal of Molecular Sciences, 22(11), 5610. https://doi.org/10.3390/ijms22115610
  • Barreca, M., Spanò, V., Montalbano, A., Cueto, M., Díaz Marrero, A. R., Deniz, I., Erdoğan, A., Lukić Bilela, L., Moulin, C., Taffin de Givenchy, E., Spriano, F., Perale, G., Mehiri, M., Rotter, A., Thomas, O., Barraja, P., Gaudêncio, S. P., & Bertoni, F. (2020). Marine anticancer agents: An overview with a particular focus on their chemical classes. Marine Drugs, 18(12), 619. https://doi.org/10.3390/md18120619
  • Barzkar, N., Sheng, R., Sohail, M., Jahromi, S. T., Babich, O., Sukhikh, S., & Nahavandi, R. (2022). Alginate lyases from marine bacteria: An enzyme ocean for sustainable future. Molecules, 27(11), 3375. https://doi.org/10.3390/molecules27113375
  • Beygmoradi, A., & Homaei, A. (2017). Marine microbes as a valuable resource for brand new industrial biocatalysts. Biocatalysis and Agricultural Biotechnology, 11, 131–152. https://doi.org/10.1016/j.bcab.2017.06.013 ISSN 1878-8181.
  • Bioenergy, I. E. A. IEA Bioenergy Task 42 Biorefinery. (2019). https://www.iea-bioenergy.task42-biorefineries.com/en/ieabiorefinery/Activities.htm.
  • Birolli, W. G., Lima, R. N., & Porto, A. L. M. (2019). Applications of marine-derived microorganisms and their enzymes in biocatalysis and biotransformation, the underexplored potentials. Frontiers in Microbiology, 10, 1453. https://doi.org/10.3389/fmicb.2019.01453
  • Buragohain, P., Nath, V., & Sharma, H. K. (2020,). Microbial degradation of waste: A review. Current trends in pharmaceutical research.
  • Cachumba, J. J., Antunes, F. A., Peres, G. F., Brumano, L. P., Santos, J. C., & Da Silva, S. S. (2016). Current applications and different approaches for microbial l-asparaginase production. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 47(Suppl 1), 77–85. https://doi.org/10.1016/j.bjm.2016.10.004
  • Chandra, P., Enespa, E., Singh, R., & Arora, P. K. (2020). Microbial lipases and their industrial applications: A comprehensive review. Microbial Cell Factories, 19(1), 169. https://doi.org/10.1186/s12934-020-01428-8
  • Chen, X. L., Wang, Y., Wang, P., & Zhang, Y.-Z. (2020). Proteases from the marine bacteria in the genus Pseudoalteromonas: Diversity, characteristics, ecological roles, and application potentials. Marine Life Science & Technology, 2(4), 309–323. https://doi.org/10.1007/s42995-020-00058-8
  • Cho, S., Kim, J., Kim, S., & Lee, S.-S. (2018). Sungchul Kim & Sang-Seob Lee Nitrogen and phosphorus treatment of marine wastewater by a laboratory-scale sequencing batch reactor with eco-friendly marine high-efficiency sediment. Environmental Technology, 39(13), 1721–1732. https://doi.org/10.1080/09593330.2017.1337234
  • Crisafi, F., Valentino, F., Micolucci, F., & Denaro, R. (2022a). From organic wastes and hydrocarbons pollutants to polyhydroxyalkanoates: Bioconversion by terrestrial and marine bacteria. Sustainability, 14(14), 8241. https://doi.org/10.3390/su14148241
  • Crisafi, F., Valentino, F., Micolucci, F., & Denaro, R. (2022b). From organic wastes and hydrocarbons pollutants to polyhydroxyalkanoates: Bioconversion by terrestrial and marine bacteria. Sustainability, 14(14), 8241. https://doi.org/10.3390/su14148241
  • Dahiya, &., Sharma, &., Rai, &., & Nigam, &. (2022). Application of biological systems and processes employing microbes and algae to reduce, recycle, reuse (3Rs) for the sustainability of circular bioeconomy. AIMS Microbiology, 8(1), 83–102. https://doi.org/10.3934/microbiol.2022008
  • Dang, H., & Lovell, C. R. (2015). Microbial surface colonization and biofilm development in marine environments. Microbiology and Molecular Biology Reviews: MMBR, 80(1), 91–138. https://doi.org/10.1128/MMBR.00037-15
  • de Souza, P. M., & de Oliveira Magalhães, P. (2010). Application of microbial α-amylase in industry - a review. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 41(4), 850–861. https://doi.org/10.1590/S1517-83822010000400004
  • Ding, J., Wu, B., & Chen, L. (2022, May 26). Application of marine microbial natural products in cosmetics. Frontiers in Microbiology, 13, https://doi.org/10.3389/fmicb.2022.892505
  • Dubey, S., & Mishra, S. (2021). Efficient production of polyhydroxyalkanoate through halophilic bacteria utilizing algal biodiesel waste residue. Frontiers in Bioengineering and Biotechnology, 9, 624859. https://doi.org/10.3389/fbioe.2021.624859
  • Dukariya, G., Kumar, A. (2020). Distribution and biotechnological applications of Chitinase: A review. International Journal of Biochemistry and Biophysics, 8(2), 17–29. https://doi.org/10.13189/ijbb.2020.080201
  • Edet, U. O., Bassey, I. U., & Joseph, A. P. (2023). Heavy metal co-resistance with antibiotics amongst bacteria isolates from an open dumpsite soil. Heliyon, 9(2), e13457. https://doi.org/10.1016/j.heliyon.2023.e13457
  • Egler, R. A., Ahuja, S. P., & Matloub, Y. (2016). L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. Journal of Pharmacology & Pharmacotherapeutics, 7(2), 62–71. https://doi.org/10.4103/0976-500X.184769
  • Fida, T. T., Moreno-Forero, S. K., Breugelmans, P., Heipieper, H. J., Röling, W. F., & Springael, D. (2017). Physiological and transcriptome response of the polycyclic aromatic hydrocarbon degrading Novosphingobium sp. LH128 after inoculation in soil. Environmental Science & Technology, 51(3), 1570–1579. https://doi.org/10.1021/acs.est.6b03822
  • Gao, R., & Sun, C. (2021). A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene. Journal of Hazardous Materials, 416(125928), ISSN 0304–3894. https://doi.org/10.1016/j.jhazmat.2021.125928
  • Ghatge, S., Yang, Y., Ahn, J. H., & Hur, H.-G. (2020). Biodegradation of polyethylene: A brief review. Applied Biological Chemistry, 63(1), 27. https://doi.org/10.1186/s13765-020-00511-3
  • Ghazi Alattas, S., Zabermawi, N. M., & El Bestawy, E. (2023). Ebtesam El Bestawy, g ggnBiodegradation of atrazine using selected marine bacteria: Possibilities for treating pesticide - contaminated wastewater. Journal of King Saud University - Science, 35(66), 102721. ISSN 1018-3647. https://doi.org/10.1016/j.jksus.2023.102721
  • Guo, W., Duan, J., Shi, Z., Yu, X., & Shao, Z. (2023). Biodegradation of PET by the membrane-anchored PET esterase from the marine bacterium rhodococcus pyridinivorans P23. Communications Biology, 6(1), 1090. https://doi.org/10.1038/s42003-023-05470-1
  • Hadi, W. A. M., Edwin, B. T., & Nair, A. J. (2023). Unlocking the potential of marine asparaginase sources. Thalassas: An International Journal of Marine Sciences. https://doi.org/10.1007/s41208-023-00636-4
  • Hassan, S. W. M., Abd El Latif, H. H., & Ali, S. M. (2018). Production of cold-active lipase by free and immobilized marine Bacillus cereus HSS: Application in wastewater treatment. HSS: Application in Wastewater Treatment Frontiers in Microbiology, 9, 2377. https://doi.org/10.3389/fmicb.2018.02377
  • Heidari, M., Dutta, A., Acharya, B., & Mahmud, S. (2019). A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. Journal of the Energy Institute, 92(6), 1779–1799. https://doi.org/10.1016/j.joei.2018.12.003
  • Imhoff, J. F., Labes, A., & Wiese, J. (2011). Bio-mining the microbial treasures of the ocean: New natural products. Biotechnology Advances, 29(5), 468–482. https://doi.org/10.1016/j.biotechadv.2011.03.001
  • Izadpanah, F., Homaei, A., Fernandes, P., & Javadpour, S. (2018). Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiological Research, 208, 99–112. https://doi.org/10.1016/j.micres.2018.01.011
  • Izadpanah Qeshmi, F., Homaei, A., Fernandes, P., & Javadpour, S. (2018). Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiological Research, 208, 99–112. ISSN 0944-5013. https://doi.org/10.1016/j.micres.2018.01.011.
  • Katinas, V., Marčiukaitis, M., Perednis, E., & Dzenajavičienė, E. F. (2019). Analysis of biodegradable waste use for energy generation in Lithuania. Renewable and Sustainable Energy Reviews, 101, 559–567. https://doi.org/10.1016/j.rser.2018.11.022
  • Kuan Li, R., Juan Hu, Y. J., Bun Ng, T., Qi Guo, B., He Zhou, Z. H., Zhao, J., & Ye, X. Y. (2020). Xiu Yun Ye,Expression and biochemical characterization of a novel chitinase ChiT-7 from the metagenome in the soil of a mangrove tidal flat in China. International Journal of Biological Macromolecules, 158, 1125–1134. ISSN 0141-8130. https://doi.org/10.1016/j.ijbiomac.2020.04.242.
  • Leong, H. Y., Chang, C. K., Khoo, K. S., Chew, K. W., Chia, S. R., Lim, J. W., Chang, J.-S., & Show, P. L. (2021). Waste biorefinery towards a sustainable circular bioeconomy: A solution to global issues. Biotechnology for Biofuels, 14(1), 87. https://doi.org/10.1186/s13068-021-01939-5
  • Li, S.-Y., Ng, I. S., Chen, P. T., Chiang, C.-J., & Chao, Y.-P. (2018). Biorefining of protein waste for production of sustainable fuels and chemicals. Biotechnology for Biofuels, 11(1), 256. https://doi.org/10.1186/s13068-018-1234-5
  • Maalej, H., Maalej, A., Affes, S., Hmidet, N., & Nasri, M. (2021). A novel digestive α-amylase from blue crab (portunus segnis) viscera: Purification, biochemical characterization and application for the improvement of antioxidant potential of oat flour. International Journal of Molecular Sciences, 22(3), 1070. https://doi.org/10.3390/ijms22031070
  • Mathivanan, K., Chandirika, U., Vinothkanna, A., Yin, H., Liu, X., & Meng, D. (2021). Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment – a review. Ecotoxicology & Environmental Safety, 226, 112863. https://doi.org/10.1016/j.ecoenv.2021.112863
  • Mishra, S., Lin, Z., Pang, S., Zhang, W., Bhatt, P., & Chen, S. (2021). Recent advanced Technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.632059
  • Mitra, R., Xu, T., Xiang, H., & Han, J. (2020). Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microbial Cell Factories, 19(1), 86. https://doi.org/10.1186/s12934-020-01342-z
  • Mohamed, S. S., Abdelhamid, S. A., & Ali, R. H. (2021). Isolation and identification of marine microbial products. Journal of Genetic Engineering and Biotechnology, 19(1), 162. https://doi.org/10.1186/s43141-021-00259-3
  • Mostafa, Y. S., Alrumman, S. A., Alamri, S. A., Otaif, K. A., Mostafa, M. S., & Alfaify, A. M. (2020). Bioplastic (poly-3-hydroxybutyrate) production by the marine bacterium Pseudodonghicola xiamenensis through date syrup valorization and structural assessment of the biopolymer. Scientific Reports, 10(1), 8815. https://doi.org/10.1038/s41598-020-65858-5
  • Navvabi, A., Razzaghi, M., Fernandes, P., Karami, L., & Homaei, A. (2018). Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochemistry, 70, 61–70. https://doi.org/10.1016/j.procbio.2018.04.018
  • Nazir, M., Saleem, M., Tousif, M. I., Anwar, M. A., Surup, F., Ali, I., Wang, D., Mamadalieva, N. Z., Alshammari, E., Ashour, M. L., Ashour, A. M., Ahmed, I., Green, E., Green, I. R., & Hussain, H. (2021). Meroterpenoids: A comprehensive update insight on structural diversity and biology. Biomolecules, 11(7), 957. https://doi.org/10.3390/biom11070957
  • Okedu, K. E., Barghash, H., & Nadabi, H. A. A. (2022, February 9). Sustainable waste management strategies for effective energy utilization in Oman: A review. Frontiers in Bioengineering and Biotechnology, 10, https://doi.org/10.3389/fbioe.2022.825728
  • Patel, A., Rova, U., Christakopoulos, P., & Matsakas, L. (2020). Mining of squalene as a value-added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate. Science of the Total Environment, 736, 139691. https://doi.org/10.1016/j.scitotenv.2020.139691
  • Paulsen, S. S., Andersen, B., Gram, L., & Machado, H. (2016). Biological potential of chitinolytic marine bacteria. Marine Drugs, 14(12), 230. https://doi.org/10.3390/md14120230
  • Paulsen, S. S., Strube, M. L., Bech, P. K., Gram, L., Sonnenschein, E. C., & Hallam, S. J. (2019). Marine chitinolytic pseudoalteromonas represents an untapped reservoir of bioactive potential. mSystems [Internet], 4(4), e00060–19. https://doi.org/10.1128/mSystems.00060-19
  • Peng, W., Li, X., Xiao, S., & Fan, W. (2018). Review of remediation technologies for sediments contaminated by heavy metals. Journal of Soils and Sediments, 18(4), 1701–1719. https://doi.org/10.1007/s11368-018-1921-7
  • Reis Neto, O. P. (2021). Impacts of a large-scale model of municipal solid waste: An Input-Output analysis for the largest Brazilian metropolitan region. Heliyon, 7(5), e06776. https://doi.org/10.1016/j.heliyon.2021.e06776
  • Rotter, A., Barbier, M., Bertoni, F., Bones, A. M., Cancela, L., Carlsson, J., De Fátima Carvalho, M., Cegłowska, M., Chirivella-Martorell, J., Dalay, M. C., Cueto, M., Dailianis, T., Deniz, I., Díaz-Marrero, A. R., Drakulović, D., Dubņika, A., Edwards, C., Einarsson, H., Erdoğan, A. & Vasquez, M. I. (2021, March 16). The essentials of Marine biotechnology. Frontiers in Marine Science, 8, https://doi.org/10.3389/fmars.2021.629629
  • Seghal Kiran, G., Nishanth Lipton, A., Kennedy, J., Dobson, A. D. & Selvin, J. (2014). A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms. Bioengineered, 5(5), 305–318. https://doi.org/10.4161/bioe.29898
  • Singh, R., Sambyal, K., Negi, A., Sonwani, S., & Mahajan, R. (2021). Chitinases production: A robust enzyme and its industrial applications. Biocatalysis and Biotransformation, 39(3), 161–189. https://doi.org/10.1080/10242422.2021.1883004
  • Singh, T., Srivastava, N., Bhatiya, A. K., & Mishra, P. K. (2017). Analytical study of effective biodegradation of p-cresol using Serratia marcescens ABHI001: Application in bioremediation. 3 Biotech, 7(6). https://doi.org/10.1007/s13205-017-1006-0
  • Sivaperumal, P., Kamala, K., & Rajaram, R. (2018). Bioremediation of industrial waste through enzyme producing marine microorganisms. Advances in Food and Nutrition Research. https://doi.org/10.1016/bs.afnr.2016.10.006
  • Suzuki, M., Tachibana, Y., & Kasuya, K. (2021). Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments. Polymer Journal, 53(1), 47–66. https://doi.org/10.1038/s41428-020-00396-5
  • Syranidou, E., Karkanorachaki, K., Amorotti, F., Repouskou, E., Kroll, K., Kolvenbach, B., Corvini, P. F., Fava, F., Kalogerakis, N., & He, Z. (2017). Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. Public Library of Science ONE, 12(8), e0183984. https://doi.org/10.1371/journal.pone.0183984
  • Urbanek, A. K., Rymowicz, W., & Mirończuk, A. M. (2018). Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Applied Microbiology and Biotechnology, 102(18), 7669–7678. https://doi.org/10.1007/s00253-018-9195-y
  • Uttatree, S., & Charoenpanich, J. (2018). Purification and characterization of a harsh conditions-resistant protease from a new strain of staphylococcus saprophyticus. Agriculture and Natural Resources, 52(1), 16–23. https://doi.org/10.1016/j.anres.2018.05.001
  • Viel, T., Manfra, L., Zupo, V., Libralato, G., Cocca, M., & Costantini, M. (2023). Biodegradation of plastics induced by marine organisms: Future perspectives for bioremediation approaches. Polymers, 15(12), 2673. https://doi.org/10.3390/polym15122673
  • Vijayaraj, A. S., Mohandass, C., & Joshi, D. (2020). Microremediation of tannery wastewater by siderophore producing marine bacteria. Environmental Technology, 41(27), 3619–3632. https://doi.org/10.1080/09593330.2019.1615995
  • Wang, Y., Jiang, L., Shang, H., Li, Q., & Zhou, W. (2020). Treatment of azo dye wastewater by the self-flocculating marine bacterium aliiglaciecola lipolytica. Environmental Technology & Innovation, 19(100810), 100810. ISSN 2352-1864. https://doi.org/10.1016/j.eti.2020.100810
  • Xu, Q., Liu, M., Liu, Q., Wang, W., Du, Y., & Yin, H. (2017). The inhibition of LPS-induced inflammation in RAW264.7 macrophages via the PI3K/Akt pathway by highly N-acetylated chitooligosaccharide. Carbohydrate Polymers, 174, 1138–1143. https://doi.org/10.1016/j.carbpol.2017.07.051
  • Yakimov, M. M., Bargiela, R., & Golyshin, P. N. (2022). Calm and Frenzy: Marine obligate hydrocarbonoclastic bacteria sustain ocean wellness. Current Opinion in Biotechnology, 73, 337–345. https://doi.org/10.1016/j.copbio.2021.09.015
  • Zhao, S., Liu, R., Wang, J., Lv, S., Zhang, B., Dong, C., & Shao, Z. (2023). Biodegradation of polyethylene terephthalate (PET) by diverse marine bacteria in deep-sea sediments. Environmental Microbiology, 25(12), 2719–2731. https://doi.org/10.1111/1462-2920.16460