Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 10, 2024 - Issue 1
368
Views
0
CrossRef citations to date
0
Altmetric
Environmental Resource Management

Geostatistical modelling of physico-chemical properties of soils impacted by artisanal gold mining and farming: implications for soil environmental quality assessment

& ORCID Icon | (Reviewing editor:) & (Reviewing editor:)
Article: 2333631 | Received 30 Jan 2024, Accepted 18 Mar 2024, Published online: 25 Mar 2024

References

  • Aharonov-Nadborny, R., Tsechansky, L., Raviv, M., & Graber, E. R. (2017). Impact of spreading olive mill waste water on agricultural soils for leaching of metal micronutrients and cations. Chemosphere, 179, 213–22. https://doi.org/10.1016/j.chemosphere.2017.03.093
  • Akaike, H. (1973). Information theory as an extention of the maximum likelihood principle. In B. Petrov & F. Csaki (Eds.), Int symp on information theory (2nd ed., pp. 267–281). Akademiai Kiadi.
  • Al-Wabel, M. I., Usman, A. R. A., Al-Farraj, A. S., Ok, Y. S., Abduljabbar, A., Al-Faraj, A. I., & Sallam, A. S. (2019). Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil. Environmental Geochemistry and Health, 41(4), 1705–1722. https://doi.org/10.1007/s10653-017-9955-0
  • Anjolaiya, O. (2015). Sorption Behaviour of Metal Contaminants in Clay Minerals, Soils and Matrices: Understanding the Influence of Organic Matter, pH, Ionic Strength and Mineralogy [ Doctoral dissertation], Loughborough University.
  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N. V., Wenzel, W. W., & Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews, 171, 621–645. https://doi.org/10.1016/j.earscirev.2017.06.005
  • Antunes, I. M. H. R., & Albuquerque, M. T. D. (2013). Using indicator kriging for the evaluation of arsenic potential contamination in an abandoned mining area (Portugal). Science of the Total Environment, 442, 545–552. https://doi.org/10.1016/j.scitotenv.2012.10.010
  • Anza, M., Garbisu, C., Salazar, O., Epelde, L., Alkorta, I., & Martínez-Santos, M. (2021). Acidification alters the functionality of metal polluted soils. Applied Soil Ecology, 163, 1–9. https://doi.org/10.1016/j.apsoil.2021.103920
  • Aredehey, G., Libsekal, H., Brhane, M., Welde, K., Giday, A., & Tejada Moral, M. (2018). Top-soil salinity mapping using geostatistical approach in the agricultural landscape of Timuga irrigation scheme, South Tigray, Ethiopia. Cogent Food & Agriculture, 4(1), 1–13. https://doi.org/10.1080/23311932.2018.1514959
  • Ashraf, M. A., Hussain, I., Rasheed, R., Iqbal, M., Riaz, M., & Arif, M. S. (2017). Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review. Journal of Environmental Economics and Management, 198, 132–143. https://doi.org/10.1016/j.jenvman.2017.04.060
  • Ayele, G. T., Demissie, S. S., Jemberrie, M. A., Jeong, J., & Hamilton, D. P. (2019). Terrain effects on the spatial variability of soil physical and chemical properties. Soil Systems, 4(1), 1–21. https://doi.org/10.3390/soilsystems4010001
  • Babur, E., Süha Uslu, Ö., Leonardo Battaglia, M., Diatta, A., Fahad, S., Datta, R., Zafar-Ul-Hye, M., Hussein, G. S., & Danish, S. (2021). Studying soil erosion by evaluating changes in physico-chemical properties of soils under different land-use types. Journal of the Saudi Society of Agricultural Sciences, 20(3), 190–197. https://doi.org/10.1016/j.jssas.2021.01.005
  • Bain, D. C., & Smith, B. E. L. (1987). Chemical analysis. In M. J. Wilson, G. Blackie (Eds.), A handbook of determinative methods in clay mineralogy (pp. 248–274).
  • Bamba, O., Pélédé, S., Sako, A., Kagambega, A., & Miningou, M. (2013). Impact de l’artisanat minier sur les sols d’un environnement agricole aménagé au Burkina Faso. Journal de sciences, 13, 1–11.
  • Batjes, N. H. (2014). Total carbon and nitrogen in the soils of the world. The European Journal of Soil Science, 65(1), 10–21. https://doi.org/10.1111/ejss.12114_2
  • Belkhiri, L., Mouni, L., Narany, T. S., & Tiri, A. (2017). Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundwater for Sustainable Development, 4, 12–22. https://doi.org/10.1016/j.gsd.2016.10.003
  • Belkhiri, L., Tiri, A., & Mouni, L. (2020). Study of the spatial distribution of groundwater quality index using geostatistical models. Groundwater for Sustainable Development, 11, 1–9. https://doi.org/10.1016/j.gsd.2020.100473
  • Berhe, A. A., & Torn, M. S. (2016). Erosional redistribution of topsoil controls soil nitrogen dynamics. Biogeochemistry, 132(1–2), 37–54. https://doi.org/10.1007/s10533-016-0286-5
  • Bhatt, M. K., Raverkar, K. P., Labanya, R., & Bhatt, C. K. (2018). Effects of long-term balanced and imbalanced use of inorganic fertilizers and organic manure (FYM) on soil chemical properties and yield of rice under rice-wheat cropping system. Journal of Pharmacognosy and Phytochemistry, 7(3), 703–708.
  • Bhunia, G. S., Shit, P. K., & Chattopadhyay, R. (2018). Assessment of spatial variability of soil properties using geostatistical approach of lateritic soil (West Bengal, India). Annals of Agrarian Science, 16(4), 436–443. https://doi.org/10.1016/j.aasci.2018.06.003
  • Bitencourt, D. G. B., Barros, W. S., Timm, L. C., She, D., Penning, L. H., Parfitt, J. M. B., & Reichardt, K. (2016). Multivariate and geostatistical analyses to evaluate lowland soil levelling effects on physico-chemical properties. Soil and Tillage Research, 156, 63–73. https://doi.org/10.1016/j.still.2015.10.004
  • Bogunovic, I., Trevisani, S., Seput, M., Juzbasic, D., & Durdevic, B. (2017). Short-range and regional spatial variability of soil chemical properties in an agro-ecosystem in eastern Croatia. Catena, 154, 50–62. https://doi.org/10.1016/j.catena.2017.02.018
  • Bongiorno, G., Bünemann, E. K., Oguejiofor, C. U., Meier, J., Gort, G., Comans, R., Mäder, P., Brissard, L., & de Goede, R. (2019). Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 99, 38–50. https://doi.org/10.1016/j.ecolind.2018.12.008
  • Bouasria, A., Namr, K. I., Rahimi, A., & Ettachfini, E. M. (2021). Geospatial assessment of soil organic matter variability at Sidi Bennour District in Doukkala Plain in Morocco. Journal of Ecological Engineering, 22(11), 120–130. https://doi.org/10.12911/22998993/142935
  • Bradaï, A., Douaoui, A., Bettahar, N., & Yahiaoui, I. (2016). Improving the prediction accuracy of groundwater salinity mapping using indicator kriging method. Journal of Irrigation & Drainage Engineering, 142(7), 1–11. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001019
  • Bremner, J. M., & Sparks, D. (1996). Methods of soil analyses part 3: Chemical analyses.
  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–151. https://doi.org/10.2136/sssaj1994.03615995005800050033x
  • Castrignanò, A., Giugliarini, L., Risaliti, R., & Martinelli, N. (2000). Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma, 97(1–2), 39–60. https://doi.org/10.1016/S0016-7061(00)00025-2
  • Chen, H., Koopal, L. K., Xiong, J., Avena, M., & Tan, W. (2017). Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite. Journal of Colloid and Interface Science, 504, 457–467. https://doi.org/10.1016/j.jcis.2017.05.078
  • Colzato, M., Alleoni, L. R. F., & Kamogawa, M. Y. (2018). Cadmium sorption and extractability in tropical soils with variable charge. Environmental Monitoring and Assessment, 190(6), 1–10. https://doi.org/10.1007/s10661-018-6666-7
  • Compaore, W. F., Dumoulin, A., & Rousseau, D. P. L. (2019). Gold mine impact on soil quality, Youga, Southern Burkina Faso, West Africa. Water, Air, & Soil Pollution, 230(8), 1–14. https://doi.org/10.1007/s11270-019-4257-z
  • da Silva, R. J. A. B., da Silva, Y. J. A. B., van Straaten, P., Araújo Do Nascimento, C. W., Biondi, C. M., da Silva, Y. J. A. B., & de Araújo Filho, J. C. (2022). Influence of parent material on soil chemical characteristics in a semi-arid tropical region of Northeast Brazil. Environmental Monitoring and Assessment, 194(5), 331. https://doi.org/10.1007/s10661-022-09914-9
  • Delbari, M., Afrasiab, P., Gharabaghi, B., Amiri, M., & Salehian, A. (2019). Spatial variability analysis and mapping of soil physical and chemical attributes in a salt-affected soil. Arabian Journal of Geosciences, 12(3), 1–18. https://doi.org/10.1007/s12517-018-4207-x
  • Eljebri, S., Mounir, M., Faroukh, A. T., Zouahri, A., & Tellal, R. (2018). Application of geostatistical methods for the spatial distribution of soils in the irrigated plain of Doukkala, Morocco. Modeling Earth Systems and Environment, 5(2), 669–687. https://doi.org/10.1007/s40808-018-0558-2
  • Eludoyin, A. O., Ojo, A. T., Ojo, T. O., Awotoye, O. O., Nzeadibe, T., & Nzeadibe, T. (2017). Effects of artisanal gold mining activities on soil properties in a part of southwestern Nigeria. Cogent Environmental Science, 3(1), 1–11. https://doi.org/10.1080/23311843.2017.1305650
  • Erdogan Erten, G., Yavuz, M., & Deutsch, C. V. (2022). Combination of machine learning and kriging for spatial estimation of geological attributes. Natural Resources Research, 31(1), 191–213. https://doi.org/10.1007/s11053-021-10003-w
  • Essandoh, P. K., Takase, M., Bryant, I. M., & Cameselle, C. (2021). Impact of small-scale mining activities on physicochemical properties of soils in Dunkwa East Municipality of Ghana. The Scientific World Journal, 2021, 1–13. https://doi.org/10.1155/2021/9915117
  • Ferreira, A. C. C., Leite, L. F. C., de Araújo, A. S. F., & Eisenhauer, N. (2016). Land-use type effects on soil organic carbon and microbial properties in a semi-arid region of Northeast Brazil. Land Degradation and Development, 27(2), 171–178. https://doi.org/10.1002/ldr.2282
  • Forkuor, G., Hounkpatin, O. K. L., Welp, G., Thiel, M., & Hui, D. (2017). High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models. Public Library of Science ONE, 12(1), 1–21. https://doi.org/10.1371/journal.pone.0170478
  • Gao, J., Mahapatra, C. T., Mapes, C. D., Khlebnikova, M., Wei, A., & Sepúlveda, M. S. (2016). Vascular toxicity of silver nanoparticles to developing zebrafish (danio rerio). Nanotoxicology, 10(9), 1363–1372. https://doi.org/10.1080/17435390.2016.1214763
  • Ghazi, A., Moghadas, N., Sadeghi, H., Ghafoori, M., & Lashkaripour, G. (2014). Spatial variability of shear wave velocity using geostatistical analysis in Mashhad city, NE Iran. Open Journal of Geology, 4(8), 354–363. https://doi.org/10.4236/ojg.2014.48027
  • Ghong, N. P., Ngwabie, N. M., Asongwe, G. A., Kedia, A. C., & Suh, C. E. (2023). An assessment and geostatistics of land-use and selected physico-chemical properties of soils in the Mount Cameroon Area. Journal of Geographic Information System, 15(2), 244–266. https://doi.org/10.4236/jgis.2023.152013
  • Goovaerts, P. (1997). Kriging vs. stochastic simulation for risk analysis in soil contamination. In A. Soares, J. Gomez-Hernandez, & R. Froidevaux (Eds.), geoENV I — geostatistics for environmental applications (pp. 247–258). Kluwer Academic Publishers.
  • Goovaerts, P. (1998). Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of Soils, 27(4), 315–334. https://doi.org/10.1007/s003740050439
  • Graber, E. R., Singh, B., Hanley, K., & Lehmann, J. (2017). Determination of cation exchange capacity in biochar. In B. Singh, M.-C. Arbestain, & J. Lehmann (Eds.), Biochar: A Guide to analytical methods (pp. 74–84). CRC Press LLC.
  • Guedes, L. P. C., Bach, R. T., & Uribe-Opazo, M. A. (2020). Nugget effect influence on spatial variability of agricultural data. Engenharia Agricola, 40(1), 96–104. https://doi.org/10.1590/1809-4430-eng.agric.v40n1p96-104/2020
  • Hampl, F. J., Schiperski, F., Schwerdhelm, C., Stroncik, N., Bryce, C., Friedhelm von Blanckenburg, F., & Neumann, T. (2023). Feedbacks between the formation of secondary minerals and the infiltration of fluids into the regolith of granitic rocks in different climatic zones (Chilean coastal Cordillera). Earth Surface Dynamics, 11(3), 511–528. https://doi.org/10.5194/esurf-11-511-2023
  • Helliwell, J. R., Miller, A. J., Whalley, W. R., Mooney, S. J., & Sturrock, C. J. (2014). Quantifying the impact of microbes on soil structural development and behaviour in wet soils. Soil Biology and Biochemistry, 74, 138–147. https://doi.org/10.1016/j.soilbio.2014.03.009
  • Hengl, T., Heuvelink, G. B. M., Kempen, B., Leenaars, J. G. B., Walsh, M. G., Shepherd, K. D., Sila, A., MacMillan, R. A., Mendes de Jesus, J., & Tondoh, J. E. (2015). Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve Current predictions. Public Library of Science ONE, 10(6), 1–26. https://doi.org/10.1371/journal.pone.0125814
  • Hilal, A., Bangroo, S. A., Kirmani, N. A., Wani, J. A., Biswas, A., Bhat, M. I., Farooq, K., Bashir, O., & Shah, T. I. (2024). Chapter 19 - geostatistical modeling—a tool for predictive soil mapping. Remote Sensing in Precision Agriculture, 389–418.
  • Hounkpatin, O. K. L., Op de Hipt, F., Bossa, A. Y., Welp, G., & Amelung, W. (2018). Soil organic carbon stocks and their determining factors in the dano catchment (Southwest Burkina Faso). Catena, 166, 298–309. https://doi.org/10.1016/j.catena.2018.04.013
  • Huang, B., Li, Z., Huang, J., Chen, G., Nie, X., Ma, W., Yao, H., Zhen, J., & Zeng, G. (2015). Aging effect on the leaching behavior of heavy metals (cu, zn, and cd) in red paddy soil. Environmental Science and Pollution Research, 22(15), 11467–11477. https://doi.org/10.1007/s11356-015-4386-x
  • Huang, M., Li, Z., Chen, M., Wen, J., Xu, W., Ding, X., Yang, R., Luo, N., & Xing, W. (2019). In situ investigation of intrinsic relationship between protonation behavior and HA characteristics in sediments. Science of the Total Environment, 683, 258–266. https://doi.org/10.1016/j.scitotenv.2019.05.235
  • Huang, M., Zhu, Y., Li, Z., Huang, B., Luo, N., Liu, C., & Zeng, G. (2016). Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: Mechanisms, efficacy, problems, and strategies. Water, Air, & Soil Pollution, 227(10), 1–18. https://doi.org/10.1007/s11270-016-3068-8
  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied Geostatistics. Oxford University Press.
  • ITA. (1977). Laboratoire du sol : méthode d’analyses physiques et chimiques du sol (3ème ed.). Mostaganem.
  • Jackson, M. L. (1958). Soil chemical analysis. Prentice Hall., Inc.
  • Jarvela-Reijonen, E., Karhunen, L., Sairanen, E., Rantala, S., Laitinen, J., Puttonen, S., Peuhkuri, K., Hallikainen, M., Juvonen, K., Myllymaki, T., Fohr, T., Pihlajamaki, J., Korpela, R., Ermes, M., Lappalainen, R., & Kolehmainen, M. (2016). High perceived stress is associated with unfavorable eating behavior in overweight and obese Finns of working age. Appetite, 105, 249–258. https://doi.org/10.1016/j.appet.2016.04.023
  • Jiang, Y., Ma, X. L., Sun, F. Y., Guo, Y. X., Ren, L. J., Wang, Y. J., & Xie, Z. L. (2021). A comparative study on the adsorption properties of heavy metal cr in lake sediment and soil. Applied Ecology and Environmental Research, 19(2), 901–914. https://doi.org/10.15666/aeer/1902_901914
  • Jović, M., Šljivić-Ivanović, M., Dimović, S., Marković, J., & Smičiklas, I. (2017). Sorption and mobility of Co(II) in relation to soil properties. Geoderma, 297, 38–47. https://doi.org/10.1016/j.geoderma.2017.03.006
  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Taylor and Francis Group.
  • Kashem, M. A., & Singh, B. R. (2001). Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in eh, pH and solubility of cd, ni and Zn. Nutrient Cycling in Agroecosystems, 61(3), 247–255. https://doi.org/10.1023/A:1013762204510
  • Kerry, R., Goovaerts, P., Rawlins, B. G., & Marchant, B. P. (2012). Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale. Geoderma, 170, 347–358. https://doi.org/10.1016/j.geoderma.2011.10.007
  • Khadka, D., Lamichhane, S., Bhantana, P., Ansari, A. R., Joshi, S., & Barwal, P. (2018). Soil fertility assessment and mapping of chungbang farm, pakhribas, dhankuta, Nepal. Advances in Plants & Agriculture Research, 8(3), 219–227. https://doi.org/10.15406/apar.2018.08.00317
  • Khaledian, Y., Brevik, E. C., Pereira, P., Cerda, A., Fattah, M. A., & Tazikeh, H. (2017). Modeling soil cation exchange capacity in multiple countries. Catena, 158, 194–200. https://doi.org/10.1016/j.catena.2017.07.002
  • Khan, M. Z., Islam, M. A., Sadiqul Amin, M., & Bhuiyan, M. M. R. (2019). Spatial variability and geostatistical analysis of selected soil. Bangladesh Journal of Scientific and Industrial Research, 54(1), 55–66. https://doi.org/10.3329/bjsir.v54i1.40731
  • Khosravi, Y., & Balyani, S. (2019). Spatial modeling of mean annual temperature in Iran: Comparing cokriging and Geographically Weighted Regression. Environmental Modeling & Assessment, 24(3), 341–354. https://doi.org/10.1007/s10666-018-9623-5
  • Kicińska, A., Pomykała, R., & Izquierdo-Diaz, M. (2021). Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science, 73(1), 1–14. https://doi.org/10.1111/ejss.13203
  • Kodirov, O., Kersten, M., Shukurov, N., & Martín Peinado, F. J. (2018). Trace metal(loid) mobility in waste deposits and soils around Chadak mining area, Uzbekistan. Science of the Total Environment, 622-623, 1658–1667. https://doi.org/10.1016/j.scitotenv.2017.10.049
  • Kopittke, P. M., Dalal, R. C., Hoeschen, C., Li, C., Menzies, N. W., & Mueller, C. W. (2020). Soil organic matter is stabilized by organo-mineral associations through two key processes: The role of the carbon to nitrogen ratio. Geoderma, 357, 1–9. https://doi.org/10.1016/j.geoderma.2019.113974
  • Korfali, S. I., & Karaki, H. (2018). Speciation of metals in soils and water: Risk assessment. Environmental Processes, 5(Suppl 1), 101–125. https://doi.org/10.1007/s40710-018-0328-1
  • Kumar, S., Prasad, S., Yadav, K. K., Shrivastava, M., Gupta, N., Nagar, S., Bach, Q.-V., Kamyab, H., Khan, S. A., Yadav, S., & Malav, L. C. (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - a review. Environmental Research, 179, 108792. https://doi.org/10.1016/j.envres.2019.108792
  • Kwiatkowska-Malina, J. (2018). Functions of organic matter in polluted soils: The effect of organic amendments on phytoavailability of heavy metals. Applied Soil Ecology, 123, 542–545. https://doi.org/10.1016/j.apsoil.2017.06.021
  • Latifah, O., Ahmed, O. H., & Majid, N. M. A. (2017). Soil pH buffering capacity and nitrogen availability following compost application in a Tropical Acid soil. Compost Science & Utilization, 26(1), 1–15. https://doi.org/10.1080/1065657X.2017.1329039
  • LCA. (2008). Practical guide: Understanding and using agri-environmental analyses. 82.
  • Li, Q., Gu, F., Zhou, Y., Xu, T., Wang, L., Zuo, Q., Xio, L., Liu, J., & Tian, Y. (2021). Changes in the Impacts of Topographic Factors, Soil Texture, and cropping systems on Topsoil Chemical Properties in the mountainous areas of the of the subtropical monsoon region from 2007 to 2017: A case study in Hefeng, China. International Journal of Environmental Research and Public Health, 18(2), 1–22. https://doi.org/10.3390/ijerph18020832
  • Li, Y., Zhang, H., Tu, C., Song, F., & Luo, Y. (2017). Occurrence of red clay horizon in soil profiles of the Yellow River Delta: Implications for accumulation of heavy metals. Journal of Geochemical Exploration, 176, 120–127. https://doi.org/10.1016/j.gexplo.2015.11.006
  • Liang, C.-P., Chen, J.-S., Chien, Y.-C., & Chen, C.-F. (2018). Spatial analysis of the risk to human health from exposure to arsenic contaminated groundwater: A kriging approach. Science of the Total Environment, 627, 1048–1057. https://doi.org/10.1016/j.scitotenv.2018.01.294
  • Lwin, C. S., Seo, B.-H., Kim, H.-U., Owens, G., & Kim, K.-R. (2018). Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—a critical review. Soil Science and Plant Nutrition, 64(2), 156–167. https://doi.org/10.1080/00380768.2018.1440938
  • Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380–388. https://doi.org/10.1016/j.envres.2017.01.021
  • Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246
  • Maurya, S., Abraham, J. S., Somasundaram, S., Toteja, R., Gupta, R., & Makhija, S. (2020). Indicators for assessment of soil quality: A mini-review. Environmental Monitoring and Assessment, 192(9), 1–22. https://doi.org/10.1007/s10661-020-08556-z
  • Moniod, F., Pouyaud, B., & Séchet, P. (1977). The Volta River basin. In Monographie Hydrologique 5. ORSTOM.
  • Moral, F. J., & Rebollo, F. J. (2017). Characterization of soil fertility using the Rasch model. Soil Science and Plant Nutrition, 17, 486–498. https://doi.org/10.4067/S0718-95162017005000035
  • Mousavi, S. R., Sarmadian, F., Dehghani, S., Sadikhani, M. R., & Taati, A. (2017). Evaluating inverse distance weighting and kriging methods in estimation of some physical and chemical properties of soil in Qazvin Plain. Eurasian Journal of Soil Science (EJSS), 6(4), 327–336. https://doi.org/10.18393/ejss.311210
  • Nadarajan, S., & Sukumaran, S. (2021). Chemistry and toxicology behind chemical fertilizers. Controlled Release Fertilizers for Sustainable Agriculture, 195–229. https://doi.org/10.1016/b978-0-12-819555-0.00012-1
  • Nas, B., & Berktay, A. (2010). Groundwater quality mapping in urban groundwater using GIS. Environmental Monitoring and Assessment, 160(1–4), 215–227. https://doi.org/10.1007/s10661-008-0689-4
  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In A. L. Page (Ed.), Methods of soil analysis, part 2: Chemical and microbiology properties. Agronomy monograph, no. 9 (pp. 539–579).
  • Nie, X. J., Zhang, J. H., Cheng, J. X., Gao, H., & Guan, Z. M. (2016). Effect of soil redistribution on various organic carbons in a water- and tillage-eroded soil. Soil and Tillage Research, 155, 1–8. https://doi.org/10.1016/j.still.2015.07.003
  • Nikroo, L., Kompani-Zare, M., Sepaskhah, A. R., & Shamsi, S. R. F. (2010). Groundwater depth and elevation interpolation by kriging methods in Mohr Basin of Fars province in Iran. Environmental Monitoring and Assessment, 166(1–4), 387–407. https://doi.org/10.1007/s10661-009-1010-x
  • Ning, C., Gao, P., Wang, B., Lin, W., Jiang, N., & Cai, K. (2017). Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. Journal of Integrative Agriculture, 16(8), 1819–1831. https://doi.org/10.1016/S2095-3119(16)61476-4
  • Obalum, S. E., Chibuike, G. U., Peth, S., & Ouyang, Y. (2017). Soil organic matter as sole indicator of soil degradation. Environmental Monitoring and Assessment, 189(4), 1–19. https://doi.org/10.1007/s10661-017-5881-y
  • Oldfield, E. E., Wood, S. A., & Bradford, M. A. (2018). Direct effects of soil organic matter on productivity mirror those observed with organic amendments. Plant and Soil, 423(1–2), 363–373. https://doi.org/10.1007/s11104-017-3513-5
  • Ouyang, J., Liu, Z., Zhang, L., Wang, Y., & Zhou, L. (2020). Analysis of influencing factors of heavy metals pollution in farmland-rice system around a uranium tailings dam. Process Safety and Environmental Protection, 139, 124–132. https://doi.org/10.1016/j.psep.2020.04.003
  • Penn, C. J., & Camberato, J. J. (2019). A Critical Review on Soil Chemical Processes that control how Soil pH affects phosphorus availability to plants. Agriculture, 9(6), 1–18. 120. https://doi.org/10.3390/agriculture9060120
  • Phefadu, K. C., & Kutu, F. R. (2016). Evaluation of spatial variability of soil physico-chemical characteristics on Rhodic Ferralsol at the Syferkuil Experimental Farm of University of Limpopo, South Africa. The Journal of Agricultural Science, 8(10), 92–106. https://doi.org/10.5539/jas.v8n10p92
  • Pikuła, D., & Stępień, W. (2021). Effect of the degree of soil contamination with heavy metals on their mobility in the soil profile in a microplot experiment. Agronomy, 11(5), 1–11. https://doi.org/10.3390/agronomy11050878
  • Pincus, L. N., Ryan, P. C., Huertas, F. J., & Alvarado, G. E. (2017). The influence of soil age and regional climate on clay mineralogy and cation exchange capacity of moist tropical soils: A case study from late quaternary chronosequences in Costa Rica. Geoderma, 308, 130–148. https://doi.org/10.1016/j.geoderma.2017.08.033
  • Pirestani, N., Ahmadi Nadoushan, M., Abolhasani, M. H., & Ahamadmahmoudi, R. Z. (2024). Mapping soil characteristics: Spatio-temporal comparison of land use regression and ordinary kriging in an Arid Environment. Journal of the Indian Society of Remote Sensing, 52(1), 79–93. https://doi.org/10.1007/s12524-023-01804-y
  • Puga, A. P., Melo, L. C. A., de Abreu, C. A., Coscione, A. R., & Paz-Ferreiro, J. (2016). Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil and Tillage Research, 164, 25–33. https://doi.org/10.1016/j.still.2016.01.008
  • Rahal, N. S., & Alhumairi, B. A. J. (2019). Modelling of soil cation exchange capacity for some soils of east gharaf lands from mid-Mesopotamian plain (wasit province/Iraq). International Journal of Environmental Science and Technology, 16(7), 3183–3192. https://doi.org/10.1007/s13762-018-1913-6
  • Ramos, F. T., de Carvalho Dores, E. F. G., dos Santos Weber, O. L., Beber, D. C., Campelo, J. H., & de Souza Maia, J. C. (2018). Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil. Journal of the Science of Food and Agriculture, 98(9), 3595–3602. https://doi.org/10.1002/jsfa.8881
  • Rangel-Peraza, J. G., Padilla-Gasca, E., López-Corrales, R., Rochín Medina, J., Bustos-Terrones, Y., Amabilis-Sosa, L. E., Rodríguez-Mata, A. E., & Osuna-Enciso, T. (2017). Robust soil quality index for tropical soils influenced by agricultural activities. Journal of Agricultural Chemistry and Environment, 6(4), 199–221. https://doi.org/10.4236/jacen.2017.64014
  • Richards, L. C. (1954). Diagnosis and improvement of saline and saline and alkali soils (agricultural handbook No (60)). US Department of Agriculture, US.
  • Rosemary, F., Vitharana, U. W. A., Indraratne, S. P., Weerasooriya, R., & Mishra, U. (2017). Exploring the spatial variability of soil properties in an Alfisol soil catena. Catena, 150, 53–61. https://doi.org/10.1016/j.catena.2016.10.017
  • Russell, A. E., Hall, S. J., & Raich, J. W. (2017). Tropical tree species traits drive soil cation dynamics via effects on pH: A proposed conceptual framework. Ecological Monographs, 87(4), 685–701. https://doi.org/10.1002/ecm.1274
  • Sako, A., Nimi, M., & Rein, A. (2018). Environmental geochemistry and ecological risk assessment of potentially harmful elements in tropical semi-arid soils around the Bagassi South artisanal gold mining site, Burkina Faso. Cogent of Environmental Sciences, 4(1), 1543–1565. https://doi.org/10.1080/23311843.2018.1543565
  • Sarkar, S., Sarkar, B., Basak, B. B., Mandal, S., Biswas, B., & Srivastava, P. (2017). Soil mineralogical perspective on Immobilization/Mobilization of heavy metals. In A. Rakshit, P. Abhilash, H. Singh, & S. Ghosh (Eds.), Adaptive soil management : From theory to practices. Springer. https://doi.org/10.1007/978-981-10-3638-5_4
  • Siedt, M., Schäffer, A., Smith, K. E. C., Nabel, M., Roß-Nickoll, M., & van Dongen, J. T. (2020). Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Science of the Total Environment, 751, 1–19. https://doi.org/10.1016/j.scitotenv.2020.141607
  • Silva, C. O., Manzione, R. L., & Oliveira, S. R. M. (2023). Exploring 20-year applications of geostatistics in precision agriculture in Brazil: What’s next? Precision Agriculture, 24(6), 2293–2326. https://doi.org/10.1007/s11119-023-10041-9
  • Singh, M., Sarkar, B., Biswas, B., Churchman, J., & Bolan, N. S. (2016). Adsorption-desorption behavior of dissolved organic carbon by soil clay fractions of varying mineralogy. Geoderma, 280, 47–56. https://doi.org/10.1016/j.geoderma.2016.06.005
  • Sintorini, M. M., Widyatmoko, H., Sinaga, E., & Aliyah, N. (2021). Effect of pH on metal mobility in the soil. Earth and Environmental Science, 737(1), 012071–6. https://doi.org/10.1088/1755-1315/737/1/012071
  • Song, W., Jia, H., Li, Z., & Tang, D. (2018). Using geographical semi-variogram method to quantify the difference between NO2 and PM2.5 spatial distribution characteristics in urban areas. Science of the Total Environment, 631–632, 688–694. https://doi.org/10.1016/j.scitotenv.2018.03.040
  • Souza, E. S. D., Fernandes, A. R., De Souza Braz, A. M., Oliveira, F. J. D., Alleoni, L. R. F., & Campos, M. C. C. (2018). Physical, chemical, and mineralogical attributes of a representative group of soils from the eastern Amazon region in Brazil. SOIL, 4(3), 195–212. https://doi.org/10.5194/soil-4-195-2018
  • Sungur, A., Soylak, M., & Özcan, H. (2016). Chemical fractionation, mobility and environmental impacts of heavy metals in greenhouse soils from Çanakkale, Turkey. Environmental Earth Sciences, 75(4), 1–11. https://doi.org/10.1007/s12665-016-5268-3
  • Suzuki, T., Nakase, K., Tamenishi, T., & Niinae, M. (2020). Influence of pH and cations contained in rainwater on leaching of Cd(II) from artificially contaminated montmorillonite. Journal of Environmental Chemical Engineering, 8(5), 1–8. https://doi.org/10.1016/j.jece.2020.104080
  • Tankari Dan-Badjo, A., Ibrahim, O. Z., Guéro, Y., Morel, J. L., Feidt, C., & Echevarria, G. (2019). Impacts of artisanal gold mining on soil, water and plant contamination by trace elements at Komabangou, Western Niger. Journal of Geochemical Exploration, 205, 1–10. https://doi.org/10.1016/j.gexplo.2019.06.010
  • Torrance, K. W., Redwood, S. D., & Cecchi, A. (2021). The impact of artisanal gold mining, ore processing and mineralization on water quality in Marmato, Colombia. Environmental Geochemistry and Health, 43(10), 4265–4282. https://doi.org/10.1007/s10653-021-00898-y
  • Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462. https://doi.org/10.1016/j.cej.2016.09.029
  • Verbeeck, M., Thiry, Y., & Smolders, E. (2019). Antimonate sorption in soils increases with ageing. European Journal of Soil Science, 71(1), 55–59. https://doi.org/10.1111/ejss.12845
  • Wang, T., Kang, F., Cheng, X., Han, H., & Ji, W. (2016). Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China. Soil and Tillage Research, 163, 176–184. https://doi.org/10.1016/j.still.2016.05.015
  • Wang, Y., Ran, L., Fang, N., & Shi, Z. (2018). Aggregate stability and associated organic carbon and nitrogen as affected by soil erosion and vegetation rehabilitation on the Loess Plateau. Catena, 167, 257–265. https://doi.org/10.1016/j.catena.2018.05.005
  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. Wiley.
  • Wei, B., Yu, J., Cao, Z., Meng, M., Yang, L., & Chen, Q. (2020). The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application. International Journal of Environmental Research and Public Health, 17(15), 1–13. https://doi.org/10.3390/ijerph17155359
  • Wilding, L. P., & Drees, L. R. (1978). Spatial variability; a pedologist’s viewpoint. In diversity of soils in the tropics. Soil Science Society of America Journal, 34, 1–12.
  • Xu, D. M., Fu, R. B., Wang, J. X., Shi, Y. X., & Guo, X. P. (2021). Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated evaluation methods–A critical review. Journal of Cleaner Production, 321, 1–22. https://doi.org/10.1016/j.jclepro.2021.128730
  • Xu, Z., Zhang, T., Wang, S., & Wang, Z. (2020). Soil pH and C/N ratio determines spatial variations in soil microbial communities and enzymatic activities of the agricultural ecosystems in Northeast China: Jilin province case. Applied Soil Ecology, 155, 1–12. https://doi.org/10.1016/j.apsoil.2020.103629
  • Zhang, Z., Wu, X., Wu, Q., Huang, X., Zhang, J., & Fang, H. (2020). Speciation and accumulation pattern of heavy metals from soil to rice at different growth stages in farmland of southwestern China. Environmental Science and Pollution Research, 27(28), 35675–35691. https://doi.org/10.1007/s11356-020-09711-2
  • Zhao, F. Z., Ren, C. J., Han, X. H., Yang, G. H., Wang, J., & Doughty, R. (2018). Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems. Forest Ecology and Management, 427, 289–295. https://doi.org/10.1016/j.foreco.2018.06.011
  • Zhu, X., Beiyuan, J., Lau, A. Y. T., Chen, S. S., Tsang, D. C. W., Graham, N. J. D., Lin, D., Sun, J., Pan, Y., Yang, X., & Li, X.-D. (2018). Sorption, mobility, and bioavailability of PBDEs in the agricultural soils: Roles of co-existing metals, dissolved organic matter, and fertilizers. Science of the Total Environment, 619-620, 1153–1162. https://doi.org/10.1016/j.scitotenv.2017.11.159