Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 10, 2024 - Issue 1
309
Views
0
CrossRef citations to date
0
Altmetric
Waste Management

Bio-extraction of valuable metals from spent lithium-ion and nickel-cadmium batteries using magnetotactic bacteria and its role in electronic waste management

, , & ORCID Icon | (Reviewing editor:) & (Reviewing editor:)
Article: 2345431 | Received 08 Nov 2023, Accepted 16 Apr 2024, Published online: 25 Apr 2024

References

  • Adhapure, N. N., Waghmare, S. S., Hamde, V. S., & Deshmukh, A. M. (2013). Metal solubilization from powdered printed circuit boards by microbial consortium from bauxite and pyrite ores. Applied Biochemistry and Microbiology, 49(3), 256–13. https://doi.org/10.1134/S0003683813030034
  • Agnihotri, K. V. (2011). E-Waste in India, research unit, Rajya Sabha Secretariat. Retrieved May 11, 2022, from. https://rajyasabha.nic.in/rsnew/publication_electronic/E-Waste_in_india.pdf
  • Ali, I., Peng, C., Khan, Z. M., Naz, I., & Sultan, M. (2018). An overview of heavy metal removal from wastewater using magnetotactic bacteria. Journal of Chemical Technology & Biotechnology, 93(10), 2817–2832. https://doi.org/10.1002/jctb.5648
  • Arakaki, A., Takeyama, H., Tanaka, T., & Matsunaga, T. (2002). Cadmium recovery by a sulfate-reducing magnetotactic bacterium, desulfovibrio magneticus RS-1, using magnetic separation. Biotech Fuel Chem, 833–840. https://doi.org/10.1007/978-1-4612-0119-9_67
  • Ara, A., & Usmani, J. A. (2015). Lead toxicity: A review. Interdisciplinary Toxicology, 8(2), 55–64. https://doi.org/10.1515/intox-2015-0009
  • Assefi, M., Maroufi, S., Mayyas, M., & Sahajwalla, V. (2018). Recycling of Ni-cd batteries by selective isolation and hydrothermal synthesis of porous NiO nanocuboid. Journal of Environmental Chemical Engineering, 6(4), 4671–4675. https://doi.org/10.1016/j.jece.2018.07.021
  • Bahaj, A. S., Croudace, I. W., & James, P. A. B. (1994). Treatment of heavy metal contaminants using magnetotactic bacteria. IEEE transactions on magnetics, 30(6), 4707–4709. https://doi.org/10.1109/20.334196
  • Bahaj, A. S., Croudace, I. W., James, P. A. B., Moeschler, F. D., & Warwick, P. E. (1998). Continuous radionuclide recovery from wastewater using magnetotactic bacteria. Journal of Magnetism and Magnetic Materials, 184(2), 241–244. https://doi.org/10.1016/S0304-8853(97)01130-X
  • Bahaj, A. S., Ellwood, D. C., & Watson, J. H. P. (1991). Extraction of heavy metals using microorganisms and high gradient magnetic separation. IEEE transactions on magnetics, 27(6), 5371–5374. https://doi.org/10.1109/20.278842
  • Baniasadi, M., Vakilchap, F., Bahaloo-Horeh, N., Mousavi, S. M., & Farnaud, S. (2019). Advances in bioleaching as a sustainable method for metal recovery from e-waste: A review. Journal of Industrial & Engineering Chemistry, 76, 75–90. https://doi.org/10.1016/j.jiec.2019.03.047
  • Bazylinski, D. A., & Schubbe, S. (2007). Controlled biomineralization by and applications of magnetotactic bacteria. Advances in Applied Microbiology, 62, 21–62. https://doi.org/10.1016/S0065-2164(07)62002-4
  • Berny, C., Fèvre R, L., Guyot, F., Blondeau, K., Guizonne, C., Rousseau, E., Bayan, N., & Alphandéry, E. (2020). A method for producing highly pure magnetosomes in large quantity for medical applications using Magnetospirillum gryphiswaldense MSR-1 magnetotactic bacteria amplified in minimal growth media. Frontiers in Bioengineering and Biotechnology, 8, 16. https://doi.org/10.3389/fbioe.2020.00016
  • Bertuol, D. A., Bernardes, A. M., & Tenorio, J. A. S. (2006). Spent NiMH batteries: Characterization and metal recovery through mechanical processing. Journal of Power Sources, 160(2), 1465–1470. https://doi.org/10.1016/j.jpowsour.2006.02.091
  • Biswal, B. K., Jadhav, U. U., Madhaiyan, M., Ji, L., Yang, E. H., & Cao, B. (2018). Biological leaching and chemical precipitation methods for recovery of Co and Li from spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 6(9), 12343–12352. https://doi.org/10.1021/acssuschemeng.8b02810
  • Blakemore, R. P., Maratea, D., & Wolfe, R. S. (1979). Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. Journal of Bacteriology, 140(2), 720–729. https://doi.org/10.1128/jb.140.2.720-729.1979
  • Boateng, T. K., Opoku, F., & Akoto, O. (2019). Heavy metal contamination assessment of groundwater quality: A case study of oti landfill site, Kumasi. Applied Water Science, 9(2), 33. https://doi.org/10.1007/s13201-019-0915-y
  • Chen, Y., Liu, N., Hu, F., Ye, L., Xi, Y., & Yang, S. (2018). Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries. Waste Management, 75, 469–476. https://doi.org/10.1016/j.wasman.2018.02.024
  • Chen, X., Xu, B., Zhou, T., Liu, D., Hu, H., & Fan, S. (2015). Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries. Sep. Separation and Purification Technology, 144, 197–205. https://doi.org/10.1016/j.seppur.2015.02.006
  • Dang, H., Li, N., Chang, Z., Wang, B., Zhan, Y., Wu, X., Liu, W., Ali, S., Li, H., Guo, J., Li, W., Zhou, H., & Sun, C. (2020). Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery. Separation and Purification Technology, 233, 116025. https://doi.org/10.1016/j.seppur.2019.116025
  • Deveci, H., Akcil, A., & Alp, I. (2004). Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: Comparative importance of pH and iron. Hydrometallurgy, 73(3–4), 293–303. https://doi.org/10.1016/j.hydromet.2003.12.001
  • Diaz-Alarcón, J. A., Alfonso-Pérez, M. P., Vergara-Gómez, I., Díaz-Lagos, M., & Martínez-Ovalle, S. A. (2019). Removal of iron and manganese in groundwater through magnetotactic bacteria. Journal of Environmental Management, 249, 109381. https://doi.org/10.1016/j.jenvman.2019.109381
  • Dubbels, B. L., DiSpirito, A. A., Morton, J. D., Semrau, J. D., Neto, J. N. E., & Bazylinski, D. A. (2004). Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology (Reading, England), 150(9), 2931–2945. https://doi.org/10.1099/mic.0.27233-0
  • Elshkaki, A., Reck, B. K., & Graedel, T. E. (2017). Anthropogenic nickel supply, demand, and associated energy and water use. Resources, Conservation and Recycling, 125, 300–307. https://doi.org/10.1016/j.resconrec.2017.07.002
  • E-Waste Fact Sheet. (2009). Clean up. Retrieved November 21, 2021, from. https://issuu.com/clean_up/docs/electronic_waste_factsheet
  • Fujimori, T., Eguchi, A., Agusa, T., Tue, N. M., Suzuki, G., Takahashi, S., Viet, P. H., Tanabe, S., & Takigami, H. (2016). Lead contamination in surface soil on roads from used lead–acid battery recycling in Dong Mai, Northern Vietnam. Journal of Material Cycles & Waste Management, 18(4), 599–607. https://doi.org/10.1007/s10163-016-0527-7
  • Ghosh, S. K., Debnath, B., Baidya, R., De, D., Li, J., Ghosh, S. K., Zheng, L., Awasthi, A. K., Liubarskaia, M. A., Ogola, J. S., & Tavares, A. N. (2016). Waste electrical and electronic equipment management and basel convention compliance in Brazil, Russia, India, China and South Africa (BRICS) nations. Waste Management & Research: The Journal of the International Solid Wastes & Public Cleansing Association, ISWA, 34(8), 693–707. https://doi.org/10.1177/0734242X16652956
  • Ghosh, B., Ghosh, M. K., Parhi, P., Mukherjee, P. S., & Mishra, B. K. (2015). Waste printed circuit boards recycling: An extensive assessment of current status. Journal of Cleaner Production, 94, 5–19. https://doi.org/10.1016/j.jclepro.2015.02.024
  • Hansda, A., Kumar, V., & Anshumali. (2016). A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World Journal of Microbiology & Biotechnology, 32(10), 1–14. https://doi.org/10.1007/s11274-016-2117-1
  • Hazotte, C., Leclerc, N., Meux, E., & Lapicque, F. (2016). Direct recovery of cadmium and nickel from Ni-Cd spent batteries by electroassisted leaching and electrodeposition in a single-cell process. Hydrometallurgy, 162, 94–103. https://doi.org/10.1016/j.hydromet.2016.02.019
  • Heelan, J., Gratz, E., Zheng, Z., Wang, Q., Chen, M., Apelian, D., & Wang, Y. (2016). Current and prospective Li-ion battery recycling and recovery processes. Jom, 68(10), 2632–2638. https://doi.org/10.1007/s11837-016-1994-y
  • Hong, Y., & Valix, M. (2014). Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. Journal of Cleaner Production, 65, 465–472. https://doi.org/10.1016/j.jclepro.2013.08.043
  • Horeh, N. B., Mousavi, S. M., & Shojaosadati, S. A. (2016). Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using aspergillus niger. Journal of Power Sources, 320, 257–266. https://doi.org/10.1016/j.jpowsour.2016.04.104
  • Hungate, R. E. (1950). The anaerobic mesophilic cellulolytic bacteria. Bacteriological Reviews, 14(1), 1. https://doi.org/10.1128/br.14.1.1-49.1950
  • Işıldar, A., van de Vossenberg, J., Rene, E. R., van Hullebusch, E. D., & Lens, P. N. (2016). Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Management, 57, 149–157. https://doi.org/10.1016/j.wasman.2015.11.033
  • Jacob, J. J., Revathy, T., Jayasri, M. A., & Suthindhiran, K. (2016). Diversity of magnetospirillum sp. From the Southern Coast of India. Current Science, 00113891) 111, 1. https://doi.org/10.18520/cs/v111/i1/177-183 (1)
  • Jhu, C. Y., Wang, Y. W., Shu, C. M., Chang, J. C., & Wu, H. C. (2011). Thermal explosion hazards on 18650 lithium-ion batteries with a VSP2 adiabatic calorimeter. Journal of Hazardous Materials, 192(1), 99–107. https://doi.org/10.1016/j.jhazmat.2011.04.097
  • Keim, C. N., & Farina, M. (2005). Gold and silver trapping by uncultured magnetotactic cocci. Geomicrobiology Journal, 22(1–2), 55–63. https://doi.org/10.1080/01490450590922550
  • Kim, M. J., Seo, J. Y., Choi, Y. S., & Kim, G. H. (2016). Bioleaching of spent Zn–mn or Ni–cd batteries by aspergillus species. Waste Manag, 51, 168–173. https://doi.org/10.1016/j.wasman.2015.11.001
  • Kopp, R. E., & Kirschvink, J. L. (2008). The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth Science Reviews, 86(1–4), 42–61. https://doi.org/10.1016/j.earscirev.2007.08.001
  • Kuzuhara, S., Akimoto, Y., Shibata, K., Oguchi, M., & Terazono, A. (2018). Evaluation by year of the valuable/hazardous material content of lithium-ion secondary battery cells and other components of notebook computer battery packs. Jouranl of Material Cycles Waste Management, 20(1), 431–438. https://doi.org/10.1007/s10163-017-0600-x
  • Liang, Y., Zhao, C. Z., Yuan, H., Chen, Y., Zhang, W., Huang, J. Q., Yu, D., Liu, Y., Titirici, M. M., Chueh, Y. L., Yu, H., & Zhang, Q. (2019). A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), 6–32. https://doi.org/10.1002/inf2.12000
  • Martinez-Laserna, E., Gandiaga, I., Sarasketa-Zabala, E., Badeda, J., Stroe, D. I., Swierczynski, M., & Goikoetxea, A. (2018). Battery second life: Hype, hope or reality? A critical review of the state of the art. Renewable & Sustainable Energy Reviews, 93, 701–718. https://doi.org/10.1016/j.rser.2018.04.035
  • Meshram, P., Pandey, B. D., & Mankhand, T. R. (2015). Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chemical Engineering Journal, 281, 418–427. https://doi.org/10.1016/j.cej.2015.06.071
  • Needhidasan, S., Samuel, M., & Chidambaram, R. (2014). Electronic waste–an emerging threat to the environment of urban India. Journal of Environmental Health Science and Engineering, 12(1), 36. https://doi.org/10.1186/2052-336X-12-36
  • Nshizirungu, T., Agarwal, A., Jo, Y. T., Rana, M., Shin, D., & Park, J. H. (2020). Chlorinated polyvinyl chloride (CPVC) assisted leaching of lithium and cobalt from spent lithium-ion battery in subcritical water. Journal of Hazardous Materials, 393, 122367. https://doi.org/10.1016/j.jhazmat.2020.122367
  • Pant, D., Joshi, D., Upreti, M. K., & Kotnala, R. K. (2012). Chemical and biological extraction of metals present in E waste: A hybrid technology. Waste Management, 32(5), 979–990. https://doi.org/10.1016/j.wasman.2011.12.002
  • Paul, S., Shakya, A. K., & Ghosh, P. K. (2020). Bacterially-assisted recovery of cadmium and nickel as their metal sulfide nanoparticles from spent Ni–cd battery via hydrometallurgical route. Journal of Environmental Management, 261, 110113. https://doi.org/10.1016/j.jenvman.2020.110113
  • Prozorov, T., Perez-Gonzalez, T., Valverde Tercedor, C., Jimenez-Lopez, C., Yebra-Rodriguez, A., Körnig, A., Faivre, D., Mallapragada, S. K., Howse, P. A., Bazylinski, D. A., & Prozorov, R. (2014). Manganese incorporation into the magnetosome magnetite: magnetic signature of doping. European Journal of Mineralogy, 26(4), 457–471. https://doi.org/10.1127/0935-1221/2014/0026-2388
  • Rahangdale, D., & Kumar, A. (2018). Acrylamide grafted chitosan based ion imprinted polymer for the recovery of cadmium from nickel-cadmium battery waste. Journal of Environmental Chemical Engineering, 6(2), 1828–1839. https://doi.org/10.1016/j.jece.2018.02.027
  • Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs)(arsenic (as), cadmium (cd), chromium (Cr)(vi), mercury (hg), and lead (pb)) on the total environment: An overview. Environment Monitoring Assess, 191(7), 419. https://doi.org/10.1007/s10661-019-7528-7
  • Randhawa, N. S., Gharami, K., & Kumar, M. (2016). Leaching kinetics of spent nickel–cadmium battery in sulphuric acid. Hydrometallurgy, 165, 191–198. https://doi.org/10.1016/j.hydromet.2015.09.011
  • Recknagel, S., Radant, H., & Kohlmeyer, R. (2014). Survey of mercury, cadmium and lead content of household batteries. Waste Management, 34(1), 156–161. https://doi.org/10.1016/j.wasman.2013.09.024
  • Richa, K., Babbitt, C. W., & Gaustad, G. (2017). Eco‐efficiency analysis of a lithium‐ion battery waste hierarchy inspired by circular economy. Journal of Industrial Ecology, 21(3), 715–730. https://doi.org/10.1111/jiec.12607
  • Roy, J. J., Madhavi, S., & Cao, B. (2021). Metal extraction from spent lithium-ion batteries (LIBs) at high pulp density by environmentally friendly bioleaching process. Journal of Cleaner Production, 280, 124242. https://doi.org/10.1016/j.jclepro.2020.124242
  • Rudnik, E., & Knapczyk-Korczak, J. (2019). Preliminary investigations on hydrometallurgical treatment of spent Li-ion batteries. Metallurgical Research and Technology, 116(6), 603. https://doi.org/10.1051/metal/2019008
  • Sakunai, T., Ito, L., & Tokai, A. (2021). Environmental impact assessment on production and material supply stages of lithium-ion batteries with increasing demands for electric vehicles. Journal of Material Cycles & Waste Management, 23(2), 470–479. https://doi.org/10.1007/s10163-020-01166-4
  • Salgado, A. L., Veloso, A. M., Pereira, D. D., Gontijo, G. S., Salum, A., & Mansur, M. B. (2003). Recovery of zinc and manganese from spent alkaline batteries by liquid–liquid extraction with cyanex 272. Journal of Power Sources, 115(2), 367–373. https://doi.org/10.1016/S0378-7753(03)00025-9
  • Sannigrahi, S., & Suthindhiran, K. (2019). Metal recovery from printed circuit boards by magnetotactic bacteria. Hydrometallurgy, 187, 113–124. https://doi.org/10.1016/j.hydromet.2019.05.007
  • Schüler, D., & Frankel, R. B. (1999). Bacterial magnetosomes: Microbiology, biomineralization and biotechnological applications. Applied Microbiology and Biotechnology, 52(4), 464–473. https://doi.org/10.1007/s002530051547
  • Schuler, D., Spring, S., & Bazylinski, D. A. (1999). Improved technique for the isolation of Magnetotactic Spirilla from a freshwater sediment and their phylogenetic characterization. Systematic and Applied Microbiology, 22(3), 466–471. https://doi.org/10.1016/S0723-2020(99)80056-3
  • Shin, S. M., Kim, N. H., Sohn, J. S., Yang, D. H., & Kim, Y. H. (2005). Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy, 79(3–4), 172–181. https://doi.org/10.1016/j.hydromet.2005.06.004
  • Song, H. P., Li, X. G., Sun, J. S., Xu, S. M., & Han, X. (2008). Application of a magnetotactic bacterium, Stenotrophomonas sp. to the removal of Au (III) from contaminated wastewater with a magnetic separator. Chemosphere, 72(4), 616–621. https://doi.org/10.1016/j.chemosphere.2008.02.064
  • Tajer-Mohammad Ghazvini, P., Kasra-Kermanshahi, R., Nozad Golikand, A., Sadeghizadeh, M., Ghorbanzadeh-Mashkani, S., & Dabbagh, R. (2016). Cobalt separation by Alphaproteobacterium MTB-KTN90: Magnetotactic bacteria in bioremediation. Bioprocess and Biosystems Engineering, 39(12), 1899–1911. https://doi.org/10.1007/s00449-016-1664-z
  • Tanong, K., Tran, L. H., Mercier, G., & Blais, J. F. (2017). Recovery of Zn (II), Mn (II), Cd (II) and Ni (II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods. Journal of Cleaner Production, 148, 233–244. https://doi.org/10.1016/j.jclepro.2017.01.158
  • Teimouri, F., Mokhtari, M., Nasiri, T., & Abouee, E. (2023). Introducing heterotrophic iron ore bacteria as new candidates in promoting the recovery of e-waste strategic metals. World Journal of Microbiology & Biotechnology, 39(5), 137. https://doi.org/10.1007/s11274-023-03589-1
  • Wang, Y., Gao, H., Sun, J., Li, J., Su, Y., Ji, Y., & Gong, C. (2011). Selective reinforced competitive biosorption of Ag (I) and Cu (II) on magnetospirillum gryphiswaldense. Desalination, 270(1–3), 258–263. https://doi.org/10.1016/j.desal.2010.11.053
  • Wang, X., Li, Y., Zhao, J., Yao, H., Chu, S., Song, Z., He, Z., & Zhang, W. (2020). Magnetotactic bacteria: Characteristics and environmental applications. Frontiers of Environmental Science & Engineering, 14(4), 1–14. https://doi.org/10.1007/s11783-020-1235-z
  • Watling, H. R. (2008). The bioleaching of nickel-copper sulfides. Hydrometallurgy, 91(1–4), 70–88. https://doi.org/10.1016/j.hydromet.2007.11.012
  • Weshahy, A. R., Sakr, A. K., Gouda, A. A., Atia, B. M., Somaily, H. H., Hanfi, M. Y., Sayyed, M. I., El Sheikh, R., El-Sheikh, E. M., Radwan, H. A., & Cheira, M. F. (2022). Selective recovery of cadmium, cobalt, and nickel from spent Ni–cd batteries using Adogen® 464 and mesoporous silica derivatives. International Journal of Molecular Sciences, 23(15), 8677. https://doi.org/10.3390/ijms23158677
  • Winslow, K. M., Laux, S. J., & Townsend, T. G. (2018). A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resources, Conservation and Recycling, 129, 263–277. https://doi.org/10.1016/j.resconrec.2017.11.001
  • Wu, W., Liu, X., Zhang, X., Li, X., Qiu, Y., Zhu, M., & Tan, W. (2019). Mechanism underlying the bioleaching process of LiCoO2 by sulfur-oxidizing and iron-oxidizing bacteria. Journal of Bioscience and Bioengineering, 128(3), 344–354. https://doi.org/10.1016/j.jbiosc.2019.03.007
  • Xin, B., Jiang, W., Li, X., Zhang, K., Liu, C., Wang, R., & Wang, Y. (2012). Analysis of reasons for decline of bioleaching efficiency of spent Zn–mn batteries at high pulp densities and exploration measure for improving performance. Bioresource Technology, 112, 186–192. https://doi.org/10.1016/j.biortech.2012.02.133
  • Zhou, W., Zhang, Y., Ding, X., Liu, Y., Shen, F., Zhang, X., Deng, S., Xiao, H., Yang, G., & Peng, H. (2012). Magnetotactic bacteria: Promising biosorbents for heavy metals. Applied Microbiology and Biotechnology, 95(5), 1097–1104. https://doi.org/10.1007/s00253-012-4245-3
  • Zubi, G., Dufo-López, R., Carvalho, M., & Pasaoglu, G. (2018). The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, 292–308. https://doi.org/10.1016/j.rser.2018.03.002