372
Views
0
CrossRef citations to date
0
Altmetric
Research Article

CeO2/ZnO nanocomposite-modified glassy carbon electrode as an enhanced sensing platform for sensitive voltammetric determination of norepinephrine

&
Article: 2255132 | Received 28 May 2023, Accepted 30 Aug 2023, Published online: 08 Sep 2023

References

  • Asadian, E., S. Shahrokhian, A. I. Zad, and F. Ghorbani-Bidkorbeh. 2017. “Glassy Carbon Electrode Modified with 3D Graphene–Carbon Nanotube Network for Sensitive Electrochemical Determination of Methotrexate.” Sensors and Actuators B: Chemical 239: 617–627. https://doi.org/10.1016/j.snb.2016.08.064
  • Ayoub, H. A., M. Khairy, F. A. Rashwan, and H. F. Abdel-Hafez. 2022. “Nanomaterial-Based Agrochemicals New Avenue for Sustainable Agriculture: A Short Review.” Journal of Chemical Reviews 4 (2): 191–199. https://doi.org/10.22034/jcr.2022.336130.1163
  • Baghbanpoor, P., H. Beitollahi, M. R. Shishehbore, and A. Sheibani. 2022. “Voltammetric Determination of Methionine in the Presence of Tryptophan Based on a CeO2–ZnO Nanocomposite/Ethyl 2-(4-Ferrocenyl [1,2,3] Triazol-1-yl) Acetate/1-Butyl-3-Methylimidazolium Hexafluorophosphate Modified Carbon Paste Electrode.” Journal of the Iranian Chemical Society 19 (11): 4545–4554. https://doi.org/10.1007/s13738-022-02620-w
  • Beitollahi, H., and S. Mohammadi. 2013. “Selective Voltammetric Determination of Norepinephrine in the Presence of Acetaminophen and Tryptophan on the Surface of a Modified Carbon Nanotube Paste Electrode.” Materials Science & Engineering. C, Materials for Biological Applications 33 (6): 3214–3219. https://doi.org/10.1016/j.msec.2013.03.050
  • Beitollahi, H., F. Ebadinejad, F. Shojaie, and M. Torkzadeh-Mahani. 2016. “A Magnetic Core–Shell Fe3O4@SiO2/MWCNT Nanocomposite Modified Carbon Paste Electrode for Amplified Electrochemical Sensing of Amlodipine and Hydrochlorothiazide.” Analytical Methods 8 (32): 6185–6193. https://doi.org/10.1039/C6AY01438K
  • Bijad, M., A. Hojjati-Najafabadi, H. Asari-Bami, S. Habibzadeh, I. Amini, and F. Fazeli. 2021. “An Overview of Modified Sensors with Focus on Electrochemical Sensing of Sulfite in Food Samples.” Eurasian Chemical Communications 3 (2): 116–138. https://doi.org/10.22034/ecc.2021.268819.1122
  • Bowers, M. L., and B. A. Yenser. 1991. “Electrochemical Behavior of Glassy Carbon Electrodes Modified by Electrochemical Oxidation.” Analytica Chimica Acta 243: 43–53. https://doi.org/10.1016/S0003-2670(00)82538-6
  • Buledi, J. A., N. Mahar, A. Mallah, A. R. Solangi, I. M. Palabiyik, N. Qambrani, F. Karimi, Y. Vasseghian, and H. Karimi-Maleh. 2022. “Electrochemical Quantification of Mancozeb through Tungsten Oxide/Reduced Graphene Oxide Nanocomposite: A Potential Method for Environmental Remediation.” Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 161: 112843. https://doi.org/10.1016/j.fct.2022.112843
  • Cerdà, V., G. O. A. Rennan, and S. L. Ferreira. 2022. “Revising Flow-Through Cells for Amperometric and Voltammetric Detections Using Stationary Mercury and Bismuth Screen Printed Electrodes.” Progress in Chemical and Biochemical Research 5 (4): 351–366. https://doi.org/10.22034/pcbr.2022.362520.1232
  • Chandrashekar, B. N., and B. K. Swamy. 2012. “Simultaneous Cyclic Voltammetric Determination of Norepinephrine, Ascorbic Acid and Uric Acid Using TX-100 Modified Carbon Paste Electrode.” Analytical Methods 4 (3): 849–854. https://doi.org/10.1039/c2ay05632a
  • Chen, X., B. Dong, Q. A. Islam, H. Song, and Y. Wu. 2021. “Semiconductor-Ionic Properties and Device Performance of Heterogeneous La-Doped CeO2-ZnO Nanocomposites.” International Journal of Hydrogen Energy 46 (15): 9968–9975. https://doi.org/10.1016/j.ijhydene.2020.04.174
  • Choubari, M. S., J. Mazloom, and F. E. Ghodsi. 2022. “Supercapacitive Properties, Optical Band Gap, and Photoluminescence of CeO2–ZnO Nanocomposites Prepared by Eco-Friendly Green and Citrate Sol-Gel Methods: A Comparative Study.” Ceramics International 48 (15): 21344–21354. https://doi.org/10.1016/j.ceramint.2022.04.100
  • Cui, F., and X. Zhang. 2012. “Electrochemical Sensor for Epinephrine Based on a Glassy Carbon Electrode Modified with Graphene/Gold Nanocomposites.” Journal of Electroanalytical Chemistry 669: 35–41. https://doi.org/10.1016/j.jelechem.2012.01.021
  • Dong, J., X. Wang, F. Qiao, P. Liu, and S. Ai. 2013. “Highly Sensitive Electrochemical Stripping Analysis of Methyl Parathion at MWCNTs–CeO2–Au Nanocomposite Modified Electrode.” Sensors and Actuators B: Chemical 186: 774–780. https://doi.org/10.1016/j.snb.2013.06.068
  • Doshi, P. S., and D. J. Edwards. 1981. “Effects of L-Dopa on Dopamine and Norepinephrine Concentrations in Rat Brain Assessed by Gas Chromatography.” Journal of Chromatography 210 (3): 505–511. https://doi.org/10.1016/S0021-9673(00)80342-8
  • Fajardo, A., D. Tapia, J. Pizarro, R. Segura, and P. Jara. 2019. “Determination of Norepinephrine Using a Glassy Carbon Electrode Modified with Graphene Quantum Dots and Gold Nanoparticles by Square Wave Stripping Voltammetry.” Journal of Applied Electrochemistry 49 (4): 423–432. https://doi.org/10.1007/s10800-019-01288-0
  • Fang, B., C. Zhang, W. Zhang, and G. Wang. 2009. “A Novel Hydrazine Electrochemical Sensor Based on a Carbon Nanotube-Wired ZnO Nanoflower-Modified Electrode.” Electrochimica Acta 55 (1): 178–182. https://doi.org/10.1016/j.electacta.2009.08.036
  • Ganesh, P. S., and B. K. Swamy. 2015. “Simultaneous Electroanalysis of Norepinephrine, Ascorbic Acid and Uric Acid Using Poly (Glutamic Acid) Modified Carbon Paste Electrode.” Journal of Electroanalytical Chemistry 752: 17–24. https://doi.org/10.1016/j.jelechem.2015.06.002
  • Garkani Nejad, F., S. Tajik, H. Beitollahi, and I. Sheikhshoaie. 2021. “Magnetic Nanomaterials Based Electrochemical (Bio) Sensors for Food Analysis.” Talanta 228: 122075. https://doi.org/10.1016/j.talanta.2020.122075
  • Guan, C. L., J. Ouyang, Q. L. Li, B. H. Liu, and W. R. G. Baeyens. 2000. “Simultaneous Determination of Catecholamines by Ion Chromatography with Direct Conductivity Detection.” Talanta 50 (6): 1197–1203. https://doi.org/10.1016/S0039-9140(99)00225-8
  • Gururaj, K. J., and B. E. Swamy. 2013. “Electrochemical Synthesis of Titanium Nano Particles at Carbon Paste Electrodes and Its Applications as an Electrochemical Sensor for the Determination of Acetaminophen in Paracetamol Tablets.” Soft Nanoscience Letters 03 (04): 20–22. https://doi.org/10.4236/snl.2013.34A006
  • Harismah, K., M. Mirzaei, M. Dai, Z. Roshandel, and E. Salarrezaei. 2021. “In Silico Investigation of Nanocarbon Biosensors for Diagnosis of COVID-19.” Eurasian Chemical Communications 3 (2): 95–102. https://doi.org/10.22034/ecc.2021.267226.1120
  • Hasanpour, F., M. Taei, M. Fouladgar, and M. Salehi. 2022. “Au Nano Dendrites/Composition Optimized Nd-Dopped Cobalt Oxide as an Efficient Electrocatalyst for Ethanol Oxidation.” Journal of Applied Organometallic Chemistry 2 (4): 203–211. https://doi.org/10.22034/jaoc.2022.154984
  • Hojjati-Najafabadi, A., M. Mansoorianfar, T. Liang, K. Shahin, and H. Karimi-Maleh. 2022. “A Review on Magnetic Sensors for Monitoring of Hazardous Pollutants in Water Resources.” The Science of the Total Environment 824: 153844. https://doi.org/10.1016/j.scitotenv.2022.153844
  • Hu, X., L. Chen, H. Huang, K. Koh, X. Zhao, and H. Chen. 2019. “Electrochemical Detection of Norepinephrine Based on Ag/Fe Decorated Single Walled Carbon Nanotubes.” Indian Journal of Chemistry 58A: 547–553. http://nopr.niscpr.res.in/handle/123456789/47301.
  • Jayaprakash, G. K., B. K. Swamy, H. N. G. Ramírez, M. T. Ekanthappa, and R. Flores-Moreno. 2018. “Quantum Chemical and Electrochemical Studies of Lysine Modified Carbon Paste Electrode Surfaces for Sensing Dopamine.” New Journal of Chemistry 42 (6): 4501–4506. https://doi.org/10.1039/C7NJ04998F
  • Kalimuthu, P., and S. A. John. 2011. “Selective Determination of Norepinephrine in the Presence of Ascorbic and Uric Acids Using an Ultrathin Polymer Film Modified Electrode.” Electrochimica Acta 56 (5): 2428–2432. https://doi.org/10.1016/j.electacta.2010.11.043
  • Karaman, C., O. Karaman, P.-L. Show, Y. Orooji, and H. Karimi-Maleh. 2022. “Utilization of a Double-Cross-Linked Amino-Functionalized Three-Dimensional Graphene Networks as a Monolithic Adsorbent for Methyl Orange Removal: equilibrium, Kinetics, Thermodynamics and Artificial Neural Network Modeling.” Environmental Research 207: 112156. [42] https://doi.org/10.1016/j.envres.2021.112156
  • Karimi-Maleh, Hassan, Yuezhen Liu, Zhangping Li, Rozhin Darabi, Yasin Orooji, Ceren Karaman, Fatemeh Karimi, et al. 2023. “Calf Thymus ds-DNA Intercalation with Pendimethalin Herbicide at the Surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; a Bio-Sensing Approach for Pendimethalin Quantification Confirmed by Molecular Docking Study.” Chemosphere 332: 138815. https://doi.org/10.1016/j.chemosphere.2023.138815
  • Kavade, R., R. Khanapure, U. Gawali, A. Patil, and S. Patil. 2022. “Degradation of Methyl Orange under Visible Light by ZnO-Polyaniline Nanocomposites.” Journal of Applied Organometallic Chemistry 2 (2): 101–112. https://doi.org/10.22034/jaoc.2022.349558.1056
  • Kumar, R. S., G K. Jayaprakash, S. Manjappa, M. Kumar, and A. P. Kumar. 2022. “Theoretical and Electrochemical Analysis of L-Serine Modified Graphite Paste Electrode for Dopamine Sensing Applications in Real Samples.” Journal of Electrochemical Science and Engineering 12: 1243–1250. https://doi.org/10.5599/jese.1390
  • Mehdizadeh, Z., S. Shahidi, A. Ghorbani-HasanSaraei, M. Limooei, and M. Bijad. 2022. “Monitoring of Amaranth in Drinking Samples Using Voltammetric Amplified Electroanalytical Sensor.” Chemical Methodologies 6 (3): 246–252. https://doi.org/10.22034/chemm.2022.324073.1423
  • Mohammadi, S Z., H. Beitollahi, and E. Bani Asadi. 2015. “Electrochemical Determination of Hydrazine Using a ZrO2 Nanoparticles-Modified Carbon Paste Electrode.” Environmental Monitoring and Assessment 187 (3): 122. https://doi.org/10.1007/s10661-015-4309-9
  • Mohanraj, J., D. Durgalakshmi, R. A. Rakkesh, S. Balakumar, S. Rajendran, and H. Karimi-Maleh. 2020. “Facile Synthesis of Paper Based Graphene Electrodes for Point of Care Devices: A Double Stranded DNA (dsDNA) Biosensor.” Journal of Colloid and Interface Science 566: 463–472. https://doi.org/10.1016/j.jcis.2020.01.089
  • Morawski, Franciele de Matos, Brenda Borges Xavier, Anike Hübner Virgili, Karine Dos Santos Caetano, Eliana Weber de Menezes, Edilson Valmir Benvenutti, Tania Maria Haas Costa, and Leliz Ticona Arenas. 2021. “A Novel Electrochemical Platform Based on Mesoporous Silica/Titania and Gold Nanoparticles for Simultaneous Determination of Norepinephrine and Dopamine.” Materials Science & Engineering. C, Materials for Biological Applications 120: 111646. https://doi.org/10.1016/j.msec.2020.111646
  • Okeoghenea, I. B., O. B. Uyoyou, and I. L. Ikhioya. 2022. “The Influence of Gamma Irradiation 60Co on CoSe/Ag Nanostructures Material Deposited via Electrochemical Deposition Technique for Photovoltaic Application.” Asian Journal of Nanosciences and Materials 5 (1): 11–21. https://doi.org/10.26655/AJNANOMAT.2022.1.2
  • Peat, M. A., and J. W. Gibb. 1983. “High-Performance Liquid Chromatographic Determination of Indoleamines, Dopamine, and Norepinephrine in Rat Brain with Fluorometric Detection.” Analytical Biochemistry 128 (2): 275–280. https://doi.org/10.1016/0003-2697(83)90375-5
  • Peyman, H., H. Roshanfekr, A. Babakhanian, and H. Jafari. 2021. “PVC Membrane Electrode Modified by Lawson as Synthetic Derivative Ionophore for Determination of Cadmium in Alloy and Wastewater.” Chemical Methodologies 5 (5): 446–453. https://doi.org/10.22034/chemm.2021.135266
  • Pyman, H. 2022. “Design and Fabrication of Modified DNA-Gp Nano-Biocomposite Electrode for Industrial Dye Measurement and Optical Confirmation.” Progress in Chemical and Biochemical Research 5 (4): 391–405. https://doi.org/10.22034/pcbr.2022.367576.1236
  • Queiroz, D. F. D., T. R. D. L. Dadamos, S. A. S. Machado, and M. A. U. Martines. 2018. “Electrochemical Determination of norepinephrine by Means of Modified Glassy Carbon Electrodes with Carbon Nanotubes and Magnetic Nanoparticles of Cobalt Ferrite.” Sensors (Basel, Switzerland) 18 (4): 1223. https://doi.org/10.3390/s18041223
  • Roshanfekr, H. 2023. “A Simple Specific Dopamine Aptasensor Based on Partially Reduced Graphene Oxide–AuNPs Composite.” Progress in Chemical and Biochemical Research 6 (1): 79–88. https://doi.org/10.22034/pcbr.2023.381280.1245
  • Salmanpour, Sadegh, Toktam Tavana, Ali Pahlavan, Mohammad A. Khalilzadeh, Ali A. Ensafi, Hassan Karimi-Maleh, Hadi Beitollahi, Elaheh Kowsari, and Daryoush Zareyee. 2012. “Voltammetric Determination of Norepinephrine in the Presence of Acetaminophen Using a Novel Ionic Liquid/Multiwall Carbon Nanotubes Paste Electrode.” Materials Science & Engineering. C, Materials for Biological Applications 32 (7): 1912–1918. https://doi.org/10.1016/j.msec.2012.05.038
  • Shahsavari, M., S. Tajik, I. Sheikhshoaie, F. Garkani Nejad, and H. Beitollahi. 2021. “Synthesis of Fe3O4@Copper (II) Imidazolate Nanoparticles: Catalytic Activity of Modified Graphite Screen Printed Electrode for the Determination of Levodopa in Presence of Melatonin.” Microchemical Journal 170: 106637. https://doi.org/10.1016/j.microc.2021.106637
  • Singh, K., A. A. Ibrahim, A. Umar, A. Kumar, G. R. Chaudhary, S. Singh, and S. K. Mehta. 2014. “Synthesis of CeO2–ZnO Nanoellipsoids as Potential Scaffold for the Efficient Detection of 4-Nitrophenol.” Sensors and Actuators B: Chemical 202: 1044–1050. https://doi.org/10.1016/j.snb.2014.05.112
  • Sohouli, E., A. H. Keihan, F. Shahdost-Fard, E. Naghian, M. E. Plonska-Brzezinska, M. Rahimi-Nasrabadi, and F. Ahmadi. 2020. “A Glassy Carbon Electrode Modified with Carbon Nanoonions for Electrochemical Determination of Fentanyl.” Materials Science & Engineering. C, Materials for Biological Applications 110: 110684. https://doi.org/10.1016/j.msec.2020.110684
  • Srinivasan, M. P., C. Uthiram, A. Ayeshamariam, K. Kaviyarasu, and N. Punithavelan. 2023. “Dielectric Performance of CeO2/ZnO Core–Shell Nanocomposite with Their Structural, Optical and Morphological Properties.” Journal of King Saud University-Science 35 (2): 102508. https://doi.org/10.1016/j.jksus.2022.102508
  • Syed, A., L. S. R. Yadav, A. H. Bahkali, A. M. Elgorban, D. Abdul Hakeem, and N. Ganganagappa. 2020. “Effect of CeO2-ZnO Nanocomposite for Photocatalytic and Antibacterial Activities.” Crystals 10 (9): 817. https://doi.org/10.3390/cryst10090817
  • Tajik, S., H. Beitollahi, H. W. Jang, and M. Shokouhimehr. 2021. “A Screen Printed Electrode Modified with Fe3O4@polypyrrole-Pt Core-Shell Nanoparticles for Electrochemical Detection of 6-Mercaptopurine and 6-Thioguanine.” Talanta 232: 122379. https://doi.org/10.1016/j.talanta.2021.122379
  • Wang, J., M. Li, Z. Shi, N. Li, and Z. Gu. 2002. “Electrocatalytic Oxidation of Norepinephrine at a Glassy Carbon Electrode Modified with Single Wall Carbon Nanotubes.” Electroanalysis 14 (3): 225–230. https://doi.org/10.1002/1521-4109(200202)14:3%3C225::AID-ELAN225%3E3.0.CO;2-I
  • Wang, Yuting, Shi Wang, Li Tao, Qing Min, Jin Xiang, Qiman Wang, Jianmei Xie, et al. 2015. “A Disposable Electrochemical Sensor for Simultaneous Determination of Norepinephrine and Serotonin in Rat Cerebrospinal Fluid Based on MWNTs-ZnO/Chitosan Composites Modified Screen-Printed Electrode.” Biosensors & Bioelectronics 65: 31–38. https://doi.org/10.1016/j.bios.2014.09.099
  • Wolski, L., K. Grzelak, M. Muńko, M. Frankowski, T. Grzyb, and G. Nowaczyk. 2021. “Insight into Photocatalytic Degradation of Ciprofloxacin over CeO2/ZnO Nanocomposites: Unravelling the Synergy between the Metal Oxides and Analysis of Reaction Pathways.” Applied Surface Science 563: 150338. https://doi.org/10.1016/j.apsusc.2021.150338
  • Yang, M., Y. Chen, H. Wang, Y. Zou, P. Wu, J. Zou, and J. Jiang. 2022. “Solvothermal Preparation of CeO2 Nanoparticles–Graphene Nanocomposites as an Electrochemical Sensor for Sensitive Detecting Pentachlorophenol.” Carbon Letters 32 (5): 1277–1285. https://doi.org/10.1007/s42823-022-00353-7
  • Zaidi, S. A., and J. H. Shin. 2016. “A Review on the Latest Developments in Nanostructure-Based Electrochemical Sensors for Glutathione.” Analytical Methods 8 (8): 1745–1754. https://doi.org/10.1039/C5AY03140K
  • Zaidi, S. A., and J. H. Shin. 2016. “Recent Developments in Nanostructure Based Electrochemical Glucose Sensors.” Talanta 149: 30–42. https://doi.org/10.1016/j.talanta.2015.11.033
  • Zhang, H. L., Y. Liu, G. S. Lai, A. M. Yu, Y. M. Huang, and C. M. Jin. 2009. “Calix [4] Arene Crown-4 Ether Modified Glassy Carbon Electrode for Electrochemical Determination of Norepinephrine.” The Analyst 134 (10): 2141–2146. https://doi.org/10.1039/B909805D
  • Zhang, Q., X. Zhao, L. Duan, H. Shen, and R. Liu. 2020. “Controlling Oxygen Vacancies and Enhanced Visible Light Photocatalysis of CeO2/ZnO Nanocomposites.” Journal of Photochemistry and Photobiology A: Chemistry 392: 112156. https://doi.org/10.1016/j.jphotochem.2019.112156
  • Zhang, Z., and H. Karimi-Maleh. 2023. “In Situ Synthesis of Label-Free Electrochemical Aptasensor-Based Sandwich-like AuNPs/PPy/Ti3C2Tx for Ultrasensitive Detection of Lead Ions as Hazardous Pollutants in Environmental Fluids.” Chemosphere 324: 138302. https://doi.org/10.1016/j.chemosphere.2023.138302
  • Zhang, Z., and H. Karimi-Maleh. 2023. “Label-Free Electrochemical Aptasensor Based on Gold Nanoparticles/Titanium Carbide MXene for Lead Detection with Its Reduction Peak as Index Signal.” Advanced Composites and Hybrid Materials 6 (2): 68. https://doi.org/10.1007/s42114-023-00652-1
  • Zhao, H., Y. Zhang, and Z. Yuan. 2002. “Poly (Isonicotinic Acid) Modified Glassy Carbon Electrode for Electrochemical Detection of Norepinephrine.” Analytica Chimica Acta 454 (1): 75–81. https://doi.org/10.1016/S0003-2670(01)01543-4
  • Zhu, M., X. Huang, J. Li, and H. Shen. 1997. “Peroxidase-Based Spectrophotometric Methods for the Determination of Ascorbic Acid, Norepinephrine, Epinephrine, Dopamine and Levodopa.” Analytica Chimica Acta 357 (3): 261–267. https://doi.org/10.1016/S0003-2670(97)00561-8