1,045
Views
87
CrossRef citations to date
0
Altmetric
Reviews

Interleukin-1 beta targeted therapy for type 2 diabetes

, , &
Pages 1177-1188 | Published online: 15 Jul 2009

Bibliography

  • Auron PE, Webb AC, Rosenwasser LJ, et al. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci USA 1984;81:7907-11
  • Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009;27:519-50
  • Boraschi D, Tagliabue A. The interleukin-1 receptor family. Vitam Horm 2006;74:229-54
  • Deyerle KL, Sims JE, Dower SK, Bothwell MA. Pattern of IL-1 receptor gene expression suggests role in noninflammatory processes. J Immunol 1992;149:1657-65
  • Scarim AL, Arnush M, Hill JR, et al. Evidence for the presence of type I IL-1 receptors on β-cells of islets of Langerhans. Biochim Biophys Acta 1997;1361(3):313-20
  • Mandrup-Poulsen T, Bendtzen K, Nielsen JH, et al. Cytokines cause functional and structural damage to isolated islets of Langerhans. Allergy 1985;40:424-9
  • Mandrup-Poulsen T, Bendtzen K, Nerup J, et al. Affinity-purified human interleukin I is cytotoxic to isolated islets of Langerhans. Diabetologia 1986;29:63-7
  • Eizirik DL. Interleukin-1 induced impairment in pancreatic islet oxidative metabolism of glucose is potentiated by tumor necrosis factor. Acta Endocrinol (Copenh) 1988;119:321-5
  • Pukel C, Baquerizo H, Rabinovitch A. Destruction of rat islet cell monolayers by cytokines. Synergistic interactions of interferon-gamma, tumor necrosis factor, lymphotoxin, and interleukin 1. Diabetes 1988;37:133-6
  • Bendtzen K, Mandrup-Poulsen T, Nerup J, et al. Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science 1986;232:1545-7
  • Dinarello CA. Biology of interleukin 1. Faseb J 1988;2:108-15
  • Warner SJ, Auger KR, Libby P. Human interleukin 1 induces interleukin 1 gene expression in human vascular smooth muscle cells. J Exp Med 1987;165:1316-31
  • Frobose H, Ronn SG, Heding PE, et al. Suppressor of cytokine signaling-3 inhibits interleukin-1 signaling by targeting the TRAF-6/TAK1 complex. Mol Endocrinol 2006;20:1587-96
  • Mokhtari D, Myers JW, Welsh N. The MAPK kinase kinase-1 is essential for stress-induced pancreatic islet cell death. Endocrinology 2008;149:3046-53
  • Giannoukakis N, Mi Z, Rudert WA, et al. Prevention of beta cell dysfunction and apoptosis activation in human islets by adenoviral gene transfer of the insulin-like growth factor I. Gene Ther 2000;7:2015-22
  • Kim S, Millet I, Kim HS, et al. NF-κB prevents β cell death and autoimmune diabetes in NOD mice. Proc Natl Acad Sci USA 2007;104:1913-8
  • Carpenter L, Cordery D, Biden TJ. Protein kinase Cδ activation by interleukin-1β stabilizes inducible nitric-oxide synthase mRNA in pancreatic β-cells. J Biol Chem 2001;276:5368-74
  • Carpenter L, Cordery D, Biden TJ. Inhibition of protein kinase C δ protects rat INS-1 cells against interleukin-1β and streptozotocin-induced apoptosis. Diabetes 2002;51:317-24
  • Augstein P, Dunger A, Heinke P, et al. Prevention of autoimmune diabetes in NOD mice by troglitazone is associated with modulation of ICAM-1 expression on pancreatic islet cells and IFN-γ expression in splenic T cells. Biochem Biophys Res Commun 2003;304:378-84
  • Stassi G, Todaro M, Richiusa P, et al. Expression of apoptosis-inducing CD95 (Fas/Apo-1) on human beta-cells sorted by flow-cytometry and cultured in vitro. Transplant Proc 1995;27:3271-5
  • Donath MY, Storling J, Maedler K, Mandrup-Poulsen T. Inflammatory mediators and islet β-cell failure: a link between type 1 and type 2 diabetes. J Mol Med 2003;81:455-70
  • Cardozo AK, Ortis F, Storling J, et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic β-cells. Diabetes 2005;54:452-61
  • Oyadomari S, Araki E, Mori M. Endoplasmic reticulum stress-mediated apoptosis in pancreatic β-cells. Apoptosis 2002;7:335-45
  • Akerfeldt MC, Howes J, Chan JY, et al. Cytokine-induced β-cell death is independent of endoplasmic reticulum stress signaling. Diabetes 2008;57:3034-44
  • Larsen CM, Wadt KA, Juhl LF, et al. Interleukin-1β-induced rat pancreatic islet nitric oxide synthesis requires both the p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. J Biol Chem 1998;273:15294-300
  • Welsh N. Interleukin-1β-induced ceramide and diacylglycerol generation may lead to activation of the c-Jun NH2-terminal kinase and the transcription factor ATF2 in the insulin-producing cell line RINm5F. J Biol Chem 1996;271:8307-12
  • Abdelli S, Abderrahmani A, Hering BJ, et al. The c-Jun N-terminal kinase JNK participates in cytokine- and isolation stress-induced rat pancreatic islet apoptosis. Diabetologia 2007;50:1660-9
  • Bonny C, Oberson A, Negri S, et al. Cell-permeable peptide inhibitors of JNK: novel blockers of β-cell death. Diabetes 2001;50:77-82
  • Pavlovic D, Andersen NA, Mandrup-Poulsen T, Eizirik DL. Activation of extracellular signal-regulated kinase (ERK)1/2 contributes to cytokine-induced apoptosis in purified rat pancreatic β-cells. Eur Cytokine Netw 2000;11:267-74
  • Saldeen J, Lee JC, Welsh N. Role of p38 mitogen-activated protein kinase (p38 MAPK) in cytokine-induced rat islet cell apoptosis. Biochem Pharmacol 2001;61:1561-9
  • Emanuelli B, Glondu M, Filloux C, et al. The potential role of SOCS-3 in the interleukin-1β-induced desensitization of insulin signaling in pancreatic beta-cells. Diabetes 2004;53:S97-103
  • Storling J, Binzer J, Andersson AK, et al. Nitric oxide contributes to cytokine-induced apoptosis in pancreatic beta cells via potentiation of JNK activity and inhibition of Akt. Diabetologia 2005;48:2039-50
  • Aikin R, Maysinger D, Rosenberg L. Cross-talk between phosphatidylinositol 3-kinase/AKT and c-jun NH2-terminal kinase mediates survival of isolated human islets. Endocrinology 2004;145:4522-31
  • Karlsen AE, Ronn SG, Lindberg K, et al. Suppressor of cytokine signaling 3 (SOCS-3) protects β-cells against interleukin-1β- and interferon-γ-mediated toxicity. Proc Natl Acad Sci USA 2001;98:12191-6
  • Ronn SG, Billestrup N, Mandrup-Poulsen T. Diabetes and suppressors of cytokine signaling proteins. Diabetes 2007;56:541-8
  • Ortis F, Cardozo AK, Crispim D, et al. Cytokine-induced proapoptotic gene expression in insulin-producing cells is related to rapid, sustained, and nonoscillatory nuclear factor-κB activation. Mol Endocrinol 2006;20:1867-79
  • Ronn SG, Borjesson A, Bruun C, et al. Suppressor of cytokine signalling-3 expression inhibits cytokine-mediated destruction of primary mouse and rat pancreatic islets and delays allograft rejection. Diabetologia 2008;51:1873-82
  • Narcisse L, Scemes E, Zhao Y, et al. The cytokine IL-1β transiently enhances P2X7 receptor expression and function in human astrocytes. Glia 2005;49:245-58
  • Arnush M, Heitmeier MR, Scarim AL, et al. IL-1 produced and released endogenously within human islets inhibits beta cell function. J Clin Invest 1998;102(3):516-26
  • Lacy PE. The intraislet macrophage and type I diabetes. Mt Sinai J Med 1994;61:170-4
  • Heitmeier MR, Arnush M, Scarim AL, Corbett JA. Pancreatic β-cell damage mediated by β-cell production of IL-1: A novel mechanism for virus-induced diabetes. J Biol Chem 2001;276:11151-8
  • Maedler K, Sergeev P, Ris F, et al. Glucose-induced β-cell production of interleukin-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest 2002;110:851-60
  • Boni-Schnetzler M, Thorne J, Parnaud G, et al. Increased interleukin (IL)-1β messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J Clin Endocrinol Metab 2008;93:4065-74
  • Donath MY, Ehses JA, Maedler K, et al. Mechanisms of β-Cell death in type 2 diabetes. Diabetes 2005;54(Suppl 2):S108-13
  • Cnop M, Welsh N, Jonas JC, et al. Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 2005;54(Suppl 2):S97-107
  • Elouil H, Cardozo AK, Eizirik DL, et al. High glucose and hydrogen peroxide increase c-Myc and haeme-oxygenase 1 mRNA levels in rat pancreatic islets without activating NFκB. Diabetologia 2005;48:496-505
  • Mine T, Miura K, Okutsu T, et al. Gene expression profile in the pancreatic islets of Goto-Kakizaki (GK) rats with repeated postprandial hyperglycemia. Diabetes 2004;53(Suppl 2):2475A
  • Jorns A, Rath KJ, Bock O, Lenzen S. Beta cell death in hyperglycaemic Psammomys obesus is not cytokine-mediated. Diabetologia 2006;49:2704-12
  • Welsh N, Cnop M, Kharroubi I, et al. Is there a role for locally produced interleukin-1 in the deleterious effects of high glucose or the type 2 diabetes milieu to human pancreatic islets? Diabetes 2005;54:3238-44
  • Maedler K, Spinas GA, Lehmann R, et al. Glucose induces β-cell apoptosis via upregulation of the Fas-receptor in human islets. Diabetes 2001;50:1683-90
  • Corbett JA, Sweetland MA, Wang JL, et al. Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets of Langerhans. Proc Natl Acad Sci USA 1993;90:1731-5
  • Giannoukakis N, Rudert WA, Ghivizzani SC, et al. Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1β-induced β-cell impairment and activation of islet cell apoptosis in vitro. Diabetes 1999;48:1730-6
  • Loweth AC, Watts K, McBain SC, et al. Dissociation between Fas expression and induction of apoptosis in human islets of Langerhans. Diabetes Obes Metab 2000;2:57-60
  • Loweth AC, Williams GT, James RF, et al. Human islets of Langerhans express Fas ligand and undergo apoptosis in response to interleukin-1β and Fas ligation. Diabetes 1998;47:727-32
  • Mandrup-Poulsen T, Bendtzen K, Nerup J, et al. Affinity-purified human interleukin I is cytotoxic to isolated islets of Langerhans. Diabetologia 1986;29:63-7
  • Mandrup-Poulsen T, Bendtzen K, et al. Cytokines cause functional and structural damage to isolated islets of Langerhans. Allergy 1985;40:424-9
  • Mandrup-Poulsen T, Zumsteg U, Reimers J, et al. Involvement of interleukin 1 and interleukin 1 antagonist in pancreatic β-cell destruction in insulin-dependent diabetes mellitus. Cytokine 1993;5:185-91
  • Rabinovitch A, Sumoski W, Rajotte RV, Warnock GL. Cytotoxic effects of cytokines on human pancreatic islet cells in monolayer culture. J Clin Endocrinol Metab 1990;71:152-6
  • Stassi G, De Maria R, Trucco G, et al. Nitric oxide primes pancreatic β cells for Fas-mediated destruction in insulin-dependent diabetes mellitus. J Exp Med 1997;186:1193-200
  • Schumann DM, Maedler K, Franklin I, et al. The Fas pathway is involved in β-cell secretory function. Proc Natl Acad Sci USA 2007;104:2861-6
  • Maedler K, Schumann DM, Sauter N, et al. Low concentration of interleukin-1β Induces FLICE-inhibitory protein-mediated β-cell proliferation in human pancreatic islets. Diabetes 2006;55:2713-22
  • Spinas GA, Hansen BS, Linde S, et al. Interleukin 1 dose-dependently affects the biosynthesis of (pro)insulin in isolated rat islets of Langerhans. Diabetologia 1987;30:474-80
  • Spinas GA, Mandrup-Poulsen T, Molvig J, et al. Low concentrations of interleukin-1 stimulate and high concentrations inhibit insulin release from isolated rat islets of Langerhans. Acta Endocrinol (Copenh) 1986;113:551-8
  • Spinas GA, Palmer JP, Mandrup-Poulsen T, et al. The bimodal effect of interleukin 1 on rat pancreatic beta-cells – stimulation followed by inhibition – depends upon dose, duration of exposure, and ambient glucose concentration. Acta Endocrinol (Copenh) 1988;119:307-11
  • Dinarello CA. The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. N Engl J Med 2000;343:732-4
  • Seckinger P, Lowenthal JW, Williamson K, et al. A urine inhibitor of interleukin 1 activity that blocks ligand binding. J Immunol 1987;139:1546-9
  • Seckinger P, Williamson K, Balavoine JF, et al. A urine inhibitor of interleukin 1 activity affects both interleukin 1 alpha and 1 beta but not tumor necrosis factor alpha. J Immunol 1987;139:1541-5
  • Arend WP, Guthridge CJ. Biological role of interleukin 1 receptor antagonist isoforms. Ann Rheum Dis 2000;59(Suppl 1):i60-4
  • Sandberg JO, Andersson A, Eizirik DL, Sandler S. Interleukin-1 receptor antagonist prevents low dose streptozotocin induced diabetes in mice. Biochem Biophys Res Commun 1994;202:543-8
  • Nicoletti F, Di Marco R, Barcellini W, et al. Protection from experimental autoimmune diabetes in the non-obese diabetic mouse with soluble interleukin-1 receptor. Eur J Immunol 1994;24:1843-7
  • Sandberg JO, Eizirik DL, Sandler S. IL-1 receptor antagonist inhibits recurrence of disease after syngeneic pancreatic islet transplantation to spontaneously diabetic non-obese diabetic (NOD) mice. Clin Exp Immunol 1997;108:314-7
  • Stoffels K, Gysemans C, Waer M, et al. Interleukin-1 receptor antagonist inhibits primary non-function and prolongs graft survival time of xenogeneic islets transplanted in spontaneously diabetic autoimmune NOD mice. Diabetologia 2002;45(Suppl 2):424
  • Tellez N, Montolio M, Estil-Les E, et al. Adenoviral overproduction of interleukin-1 receptor antagonist increases beta cell replication and mass in syngeneically transplanted islets, and improves metabolic outcome. Diabetologia 2007;50:602-11
  • Satoh M, Yasunami Y, Matsuoka N, et al. Successful islet transplantation to two recipients from a single donor by targeting proinflammatory cytokines in mice. Transplantation 2007;83:1085-92
  • Maedler K, Sergeev P, Ehses JA, et al. Leptin modulates β cell expression of IL-1 receptor antagonist and release of IL-1β in human islets. Proc Natl Acad Sci USA 2004;101:8138-43
  • Sandberg JO, Eizirik DL, Sandler S, et al. Treatment with an interleukin-1 receptor antagonist protein prolongs mouse islet allograft survival. Diabetes 1993;42:1845-51
  • Tellez N, Montolio M, Biarnes M, et al. Adenoviral overexpression of interleukin-1 receptor antagonist protein increases beta-cell replication in rat pancreatic islets. Gene Ther 2005;12:120-8
  • Wilson HL, Francis SE, Dower SK, Crossman DC. Secretion of intracellular IL-1 receptor antagonist (type 1) is dependent on P2X7 receptor activation. J Immunol 2004;173:1202-8
  • Glas R, Sauter NS, Schulthess FT, et al. Purinergic P2X7 receptors regulate secretion of interleukin-1 receptor antagonist and beta cell function and survival. Diabetologia 2009. (In Press)
  • Abbatecola AM, Ferrucci L, Grella R, et al. Diverse effect of inflammatory markers on insulin resistance and insulin-resistance syndrome in the elderly. J Am Geriatr Soc 2004;52:399-404
  • Meier CA, Bobbioni E, Gabay C, et al. IL-1 receptor antagonist serum levels are increased in human obesity: a possible link to the resistance to leptin? J Clin Endocrinol Metab 2002;87:1184-8
  • Ruotsalainen E, Salmenniemi U, Vauhkonen I, et al. Changes in inflammatory cytokines are related to impaired glucose tolerance in offspring of type 2 diabetic subjects. Diabetes Care 2006;29:2714-20
  • Salmenniemi U, Ruotsalainen E, Pihlajamaki J, et al. Multiple abnormalities in glucose and energy metabolism and coordinated changes in levels of adiponectin, cytokines, and adhesion molecules in subjects with metabolic syndrome. Circulation 2004;110:3842-8
  • Marculescu R, Endler G, Schillinger M, et al. Interleukin-1 receptor antagonist genotype is associated with coronary atherosclerosis in patients with type 2 diabetes. Diabetes 2002;51:3582-5
  • Herder C, Brunner EJ, Rathmann W, et al. Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist (IL-1Ra) precede the onset of type 2 diabetes (Whitehall II Study). Diabetes Care 2008
  • Juge-Aubry CE, Somm E, Giusti V, et al. Adipose tissue is a major source of interleukin-1 receptor antagonist: upregulation in obesity and inflammation. Diabetes 2003;52:1104-10
  • Sauter NS, Schulthess FT, Galasso R, et al. The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology 2008;149:2208-18
  • Koenig W, Khuseyinova N, Baumert J, et al. Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women: results from the MONICA/KORA Augsburg case-cohort study, 1984-2002. Arterioscler Thromb Vasc Biol 2006;26:2745-51
  • Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115:1111-19
  • de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett 2008;582:97-105
  • Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 2008;118:2992-3002
  • Ehses JA, Perren A, Eppler E, et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 2007;56:2356-70
  • Homo-Delarche F, Calderari S, Irminger JC, et al. Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes 2006;55:1625-33
  • Weksler-Zangen S, Raz I, Lenzen S, et al. Impaired glucose-stimulated insulin secretion is coupled with exocrine pancreatic lesions in the Cohen diabetic rat. Diabetes 2008;57:279-87
  • Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006;7:85-96
  • Rui L, Yuan M, Frantz D, et al. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 2002;277:42394-8
  • Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796-808
  • Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112:1821-30
  • Koerner A, Kratzsch J, Kiess W. Adipocytokines: leptin–the classical, resistin–the controversical, adiponectin–the promising, and more to come. Best Pract Res Clin Endocrinol Metab 2005;19:525-46
  • Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 2006;6:772-83
  • Rasouli N, Kern PA. Adipocytokines and the metabolic complications of obesity. J Clin Endocrinol Metab 2008;93:S64-73
  • Yu X, Park BH, Wang MY, et al. Making insulin-deficient type 1 diabetic rodents thrive without insulin. Proc Natl Acad Sci USA 2008;105:14070-5
  • Seufert J, Kieffer TJ, Leech CA, et al. Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab 1999;84:670-6
  • Roduit R, Thorens B. Inhibition of glucose-induced insulin secretion by long-term preexposure of pancreatic islets to leptin. FEBS Lett 1997;415:179-82
  • Gabay C, Dreyer M, Pellegrinelli N, et al. Leptin directly induces the secretion of interleukin 1 receptor antagonist in human monocytes. J Clin Endocrinol Metab 2001;86:783-91
  • Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117:175-84
  • Barshes NR, Wyllie S, Goss JA. Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation: implications for intrahepatic grafts. J Leukoc Biol 2005;77:587-97
  • Bottino R, Fernandez LA, Ricordi C, et al. Transplantation of allogeneic islets of Langerhans in the rat liver: effects of macrophage depletion on graft survival and microenvironment activation. Diabetes 1998;47:316-23
  • Kaufman DB, Platt JL, Rabe FL, et al. Differential roles of Mac-1+ cells, and CD4+ and CD8+ T lymphocytes in primary nonfunction and classic rejection of islet allografts. J Exp Med 1990;172:291-302
  • Kaufman DB, Gores PF, Field MJ, et al. Effect of 15-deoxyspergualin on immediate function and long-term survival of transplanted islets in murine recipients of a marginal islet mass. Diabetes 1994;43:778-83
  • Tran PO, Gleason CE, Robertson RP. Inhibition of interleukin-1beta-induced COX-2 and EP3 gene expression by sodium salicylate enhances pancreatic islet beta-cell function. Diabetes 2002;51:1772-8
  • Zeender E, Maedler K, Bosco D, et al. Pioglitazone and Sodium Salicylate Protect Human {beta}-Cells against Apoptosis and Impaired Function Induced by Glucose and Interleukin-1{beta}. J Clin Endocrinol Metab 2004;89:5059-66
  • Solinas G, Vilcu C, Neels JG, et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab 2007;6:386-97
  • Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005;11:183-90
  • Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005;11:191-8
  • Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol 2005;5:629-40
  • Touzani O, Boutin H, Chuquet J, Rothwell N. Potential mechanisms of interleukin-1 involvement in cerebral ischaemia. J Neuroimmunol 1999;100:203-15
  • Rothwell NJ, Luheshi GN. Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci 2000;23:618-25
  • Dinarello CA, Wolff SM. Molecular basis of fever in humans. Am J Med 1982;72:799-819
  • Wolf G, Yirmiya R, Goshen I, et al. Impairment of interleukin-1 (IL-1) signaling reduces basal pain sensitivity in mice: genetic, pharmacological and developmental aspects. Pain 2003;104:471-80
  • Goshen I, Yirmiya R, Iverfeldt K, Weidenfeld J. The role of endogenous interleukin-1 in stress-induced adrenal activation and adrenalectomy-induced adrenocorticotropic hormone hypersecretion. Endocrinology 2003;144:4453-8
  • Schneider H, Pitossi F, Balschun D, et al. A neuromodulatory role of interleukin-1beta in the hippocampus. Proc Natl Acad Sci USA 1998;95:7778-83
  • Sims JE, Dower SK. Interleukin-1 receptors. Eur Cytokine Netw 1994;5:539-46
  • De Souza CT, Araujo EP, Bordin S, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 2005;146:4192-9
  • Milanski M, Degasperi G, Coope A, et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 2009;29:359-70
  • Munzberg H, Flier JS, Bjorbaek C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 2004;145:4880-9
  • Vandenabeele P, Fiers W. Is amyloidogenesis during Alzheimer's disease due to an IL-1-/IL-6-mediated ‘acute phase response’ in the brain? Immunol Today 1991;12:217-19
  • Holden RJ, Mooney PA. Interleukin-1 beta: a common cause of Alzheimer's disease and diabetes mellitus. Med Hypotheses 1995;45:559-71
  • Zuliani G, Ranzini M, Guerra G, et al. Plasma cytokines profile in older subjects with late onset alzheimer's disease or vascular dementia. J Psychiatr Res 2007;41:686-93
  • Goldgaber D, Harris HW, Hla T, et al. Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proc Natl Acad Sci USA 1989;86:7606-10
  • Haataja L, Gurlo T, Huang CJ, Butler PC. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 2008;29:303-16
  • Butler AE, Jang J, Gurlo T, et al. Diabetes due to a progressive defect in beta-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat): a new model for type 2 diabetes. Diabetes 2004;53:1509-16
  • Borsello T, Forloni G. JNK signalling: a possible target to prevent neurodegeneration. Curr Pharm Des 2007;13:1875-86
  • Howard JK, Cave BJ, Oksanen LJ, et al. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med 2004;10:734-8
  • Bence KK, Delibegovic M, Xue B, et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med 2006;12:917-24
  • Liadis N, Salmena L, Kwan E, et al. Distinct in vivo roles of caspase-8 in beta-cells in physiological and diabetes models. Diabetes 2007;56:2302-11
  • Schumann DM, Maedler K, Franklin I, et al. The Fas pathway is involved in pancreatic {beta} cell secretory function. Proc Natl Acad Sci USA 2007;104:2861-6
  • Flodstrom M, Welsh N, Eizirik DL. Cytokines activate the nuclear factor kappa B (NF-kappa B) and induce nitric oxide production in human pancreatic islets. FEBS Lett 1996;385:4-6
  • Liuwantara D, Elliot M, Smith MW, et al. Nuclear factor-kappaB regulates beta-cell death: a critical role for A20 in beta-cell protection. Diabetes 2006;55:2491-501
  • Hammar E, Parnaud G, Bosco D, et al. Extracellular matrix protects pancreatic {beta}-cells against apoptosis: role of short- and long-term signaling pathways. Diabetes 2004;53:2034-41
  • Thomas HE, Irawaty W, Darwiche R, et al. IL-1 receptor deficiency slows progression to diabetes in the NOD mouse. Diabetes 2004;53:113-21
  • Schott WH, Haskell BD, Tse HM, et al. Caspase-1 is not required for type 1 diabetes in the NOD mouse. Diabetes 2004;53:99-104
  • Jafarian-Tehrani M, Amrani A, Homo-Delarche F, et al. Localization and characterization of interleukin-1 receptors in the islets of Langerhans from control and nonobese diabetic mice. Endocrinology 1995;136:609-13
  • Balasa B, La Cava A, Van Gunst K, et al. A mechanism for IL-10-mediated diabetes in the nonobese diabetic (NOD) mouse: ICAM-1 deficiency blocks accelerated diabetes. J Immunol 2000;165:7330-7
  • Ehses JA, Giroix M-H, Coulaud J, et al. IL-1β-MyD88 signaling is central to islet chemokine secretion in response to metabolic stress: evidence from a spontaneous model of type 2 diabetes, the GK rat. Diabetologia 2008;50(Suppl 1):S177
  • Owyang AM, Gross L, Yin J, et al. XOMA 052, an anti-IL-1β antibody, improves glucose control, β-Cell function, and insulin resistance in the diet-induced obesity mouse model. Diabetes 2009;58(S1):A82
  • Osborn O, Brownell SE, Sanchez-Alavez M, et al. Treatment with an Interleukin 1 beta antibody improves glycemic control in diet-induced obesity. Cytokine 2008;44:141-8
  • Larsen CM, Faulenbach M, Vaag A, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 2007;356:1517-26
  • Pickersgill LM, Mandrup-Poulsen TR. The anti-interleukin-1 in type 1 diabetes action trial--background and rationale. Diabetes Metab Res Rev 2009;25:321-4
  • Donath MY, Weder C, Brunner A, et al. XOMA 052, a potential disease modifying anti-IL-10 antibody shows sustained HbA1c reductions 3 months after single injection with no increases in safety parameters in subjects with T2DM. Diabetes 2008;58S1:A30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.