223
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Developing intrabodies for the therapeutic suppression of neurodegenerative pathology

, PhD, &
Pages 1189-1197 | Published online: 05 Aug 2009

Bibliography

  • Carlson JR. A new means of inducibly inactivating a cellular protein. Mol Cell Biol 1988;8(6):2638-46
  • Mukhtar MM, Li S, Li W, et al. Single-chain intracellular antibodies inhibit influenza virus replication by disrupting interaction of proteins involved in viral replication and transcription. Int J Biochem Cell Biol 2009;41(3):554-60
  • Aires da Silva F, Santa-Marta M, Freitas-Vieira A, et al. Camelized rabbit-derived VH single-domain intrabodies against Vif strongly neutralize HIV-1 infectivity. J Mol Biol 2004;340(3):525-42
  • Doorbar J, Griffin H. Intrabody strategies for the treatment of human papillomavirus-associated disease. Expert Opin Biol Ther 2007;7(5):677-89
  • Marasco WA, Chen S, Richardson JH, et al. Intracellular antibodies against HIV-1 envelope protein for AIDS gene therapy. Hum Gene Ther 1998;9(11):1627-42
  • Lo AS, Zhu Q, Marasco WA. Intracellular antibodies (intrabodies) and their therapeutic potential. Handb Exp Pharmacol 2008;(181):343-73
  • Tanaka T, Williams RL, Rabbitts TH. Tumour prevention by a single antibody domain targeting the interaction of signal transduction proteins with RAS. EMBO J 2007;26(13):3250-9
  • Groot AJ, Gort EH, van der Wall E, et al. Conditional inactivation of HIF-1 using intrabodies. Cell Oncol 2008;30(5):397-409
  • Messer A, McLear J. The therapeutic potential of intrabodies in neurologic disorders: focus on huntington and Parkinson diseases. Biodrugs 2006;20(6):327-33
  • Miller TW, Messer A. Intrabody applications in neurological disorders: progress and future prospects. Mol Ther 2005;12(3):394-401
  • Cardinale A, Biocca S. The potential of intracellular antibodies for therapeutic targeting of protein-misfolding diseases. Trends Mol Med 2008;14(9):373-80
  • Zhou C, Przedborski S. Intrabody and Parkinson's disease. Biochim Biophys Acta 2009;1792(7):634-42
  • Orlandi R, Gussow DH, Jones PT, Winter G. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc Natl Acad Sci USA 1989;86(10):3833-7
  • Holt LJ, Herring C, Jespers LS, et al. Domain antibodies: proteins for therapy. Trends Biotechnol 2003;21(11):484-90
  • Paz K, Brennan LA, Iacolina M, et al. Human single-domain neutralizing intrabodies directed against Etk kinase: a novel approach to impair cellular transformation. Mol Cancer Ther 2005;4(11):1801-9
  • Feldhaus MJ, Siegel RW. Yeast display of antibody fragments: a discovery and characterization platform. J Immunol Methods 2004;290(1-2):69-80
  • Lecerf JM, Shirley TL, Zhu Q, et al. Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington's disease. Proc Natl Acad Sci USA 2001;98(8):4764-9
  • Colby DW, Chu Y, Cassady JP, et al. Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc Natl Acad Sci USA 2004;101(51):17616-21
  • Emadi S, Liu R, Yuan B, et al. Inhibiting aggregation of alpha−synuclein with human single chain antibody fragments. Biochemistry 2004;43:2871-8
  • Visintin M, Tse E, Axelson H, et al. Selection of antibodies for intracellular function using a two-hybrid in vivo system. Proc Natl Acad Sci USA 1999;96(21):11723-8
  • Visintin M, Settanni G, Maritan A, et al. The intracellular antibody capture technology (IACT): towards a consensus sequence for intracellular antibodies. J Mol Biol 2002;317(1):73-83
  • Philibert P, Stoessel A, Wang W, et al. A focused antibody library for selecting scFvs expressed at high levels in the cytoplasm. BMC Biotechnol 2007;7:81. Published online 22 November 2007, doi:10.1186/1472-6750-7-81
  • Muyldermans S, Baral TN, Retamozzo VC, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 2009;128(1-3):178-83
  • Habicht G, Haupt C, Friedrich RP, et al. Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing Aβ protofibrils. Proc Natl Acad Sci USA 2007;104(49):19232-7
  • Chartier A, Raz V, Sterrenburg E, et al. Prevention of oculopharyngeal muscular dystrophy by muscular expression of Llama single-chain intrabodies in vivo. Hum Mol Genet 2009;18(10):1849-59
  • Shuntao W, Jiannan F, Jianwei G, et al. A novel designed single domain antibody on 3-D structure of ricin A chain remarkably blocked ricin-induced cytotoxicity. Mol Immunol 2006;43(11):1912-9
  • Davies J, Riechmann L. ‘Camelising’ human antibody fragments: NMR studies on VH domains. FEBS Lett 1994;339(3):285-90
  • The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993;72(6):971-83
  • Duyao MP, Auerbach AB, Ryan A, et al. Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 1995;269(5222):407-10
  • Caviston JP, Holzbaur EL. Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol 2009;19(4):147-55
  • Imarisio S, Carmichael J, Korolchuk V, et al. Huntington's disease: from pathology and genetics to potential therapies. Biochem J 2008;412(2):191-209
  • Ferrante RJ. Mouse models of Huntington's disease and methodological considerations for therapeutic trials. Biochim Biophys Acta 2009;1792(6):506-20
  • Sapp E, Schwarz C, Chase K, et al. Huntingtin localization in brains of normal and Huntington's disease patients. Ann Neurol 1997;42(4):604-12
  • Difiglia M, Sapp E, Chase KO, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997;277(5334):1990-3
  • Becher MW, Kotzuk JA, Sharp AH, et al. Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis 1998;4(6):387-97
  • Becher MW, Ross CA. Intranuclear neuronal inclusions in DRPLA. Mov Disord 1998;13(5):852-3
  • Skinner PJ, Koshy BT, Cummings CJ, et al. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 1997;389(6654):971-4
  • Holmberg M, Duyckaerts C, Durr A, et al. Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet 1998;7(5):913-8
  • Paulson HL, Das SS, Crino PB, et al. Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol 1997;41(4):453-62
  • Gutekunst CA, Li SH, Yi H, et al. Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J Neurosci 1999;19(7):2522-34
  • Atwal RS, Xia J, Pinchev D, et al. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum Mol Genet 2007;16(21):2600-15
  • Cornett J, Cao F, Wang CE, et al. Polyglutamine expansion of huntingtin impairs its nuclear export. Nat Genet 2005;37(2):198-204
  • Omi K, Hachiya NS, Tanaka M, et al. 14-3-3zeta is indispensable for aggregate formation of polyglutamine-expanded huntingtin protein. Neurosci Lett 2008;431(1):45-50
  • Rockabrand E, Slepko N, Pantalone A, et al. The first 17 amino acids of huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum Mol Genet 2007;16(1):61-77
  • Landles C, Bates GP. Huntingtin and the molecular pathogenesis of Huntington's disease. Fourth in molecular medicine review series. EMBO Rep 2004;5(10):958-63
  • Hatters DM. Protein misfolding inside cells: the case of huntingtin and Huntington's disease. IUBMB Life 2008;60(11):724-8
  • Kvam E, Nannenga BL, Wang MS, et al. Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity. PLoS One 2009;4(5):e5727. Published online: 28 May, 2009, doi:10.1371/journal.pone.0005727
  • Lecerf J-M, Shirley TL, Zhu Q, et al. Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington's disease. PNAS 2001;98(8):4764-9
  • Murphy RC, Messer A. A single-chain Fv intrabody provides functional protection against the effects of mutant protein in an organotypic slice culture model of Huntington's disease. Brain Res Mol Brain Res 2004;121:141-5
  • Miller TW, Zhou C, Gines S, et al. A human single-chain Fv intrabody preferentially targets amino-terminal huntingtin fragments in striatal models of Huntington's disease. Neurobiol Dis 2005;19:47-56
  • Auerbach W, Hurlbert MS, Hilditch-Maguire P, et al. The HD mutation causes progressive lethal neurological disease in mice expressing reduced levels of huntingtin. Hum Mol Genet 2001;10(22):2515-23
  • Southwell AL, Khoshnan A, Dunn DE, et al. Intrabodies binding the proline-rich domains of mutant huntingtin increase its turnover and reduce neurotoxicity. J Neurosci 2008;28(36):9013-20
  • Khoshnan A, Ko J, Patterson PH. Effects of intracellular expression of anti-huntingtin antibodies of various specificities on mutant huntingtin aggregation and toxicity. Proc Natl Acad Sci USA 2002;99(2):1002-7
  • Ko J, Ou S, Patterson PH. New anti-huntingtin monoclonal antibodies: implications for huntingtin conformation and its binding proteins. Brain Res Bull 2001;56(3-4):319-29
  • Baker JD, McNabb SL, Truman JW. The hormonal coordination of behavior and physiology at adult ecdysis in Drosophila melanogaster. J Exp Biol 1999;202(Pt 21):3037-48
  • Wolfgang WJ, Miller TW, Webster JM, et al. Suppression of Huntington's disease pathology in Drosophila by human single-chain Fv antibodies. Proc Natl Acad Sci USA 2005;102:11563-8
  • McLear JA, Lebrecht D, Messer A, Wolfgang WJ. Combinational approach of intrabody with enhanced Hsp70 expression addresses multiple pathologies in a fly model of Huntington's disease. FASEB J 2008;22:2003-11
  • Jackson GR, Salecker I, Dong X, et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 1998;21(3):633-42
  • Wang CE, Zhou H, McGuire JR, et al. Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. J Cell Biol 2008;181(5):803-16
  • Lewis PA. Emerging pathways in genetic Parkinson's disease. FEBS J 2008;275(23):5747
  • Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies. Nature 1997;388(6645):839-40
  • Mezey E, Dehejia AM, Harta G, et al. Alpha synuclein is present in Lewy bodies in sporadic Parkinson's disease. Mol Psychiatry 1998;3(6):493-9
  • Fahn S. How do you treat motor complications in Parkinson's disease: medicine, surgery, or both? Ann Neurol 2008;64(Suppl 2):S56-64
  • Hornykiewicz O. Biochemical aspects of Parkinson's disease. Neurology 1998;51(2 Suppl 2):S2-9
  • Volles MJ, Lansbury PT Jr. Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson's disease. Biochemistry 2003;42(26):7871-8
  • Smith WW, Pei Z, Jiang H, et al. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 2006;9(10):1231-3
  • Giasson BI, Murray IV, Trojanowski JQ, Lee VM. A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 2001;276(4):2380-6
  • Singleton AB, Farrer M, Johnson J, et al. Alpha-Synuclein locus triplication causes Parkinson's disease. Science 2003;302(5646):841
  • Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 1997;276(5321):2045-7
  • Li W, West N, Colla E, et al. Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson's disease-linked mutations. Proc Natl Acad Sci USA 2005;102(6):2162-7
  • Periquet M, Fulga T, Myllykangas L, et al. Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J Neurosci 2007;27(12):3338-46
  • Lynch SM, Zhou C, Messer A. An scFv intrabody against the nonamyloid component of alpha-synuclein reduces intracellular aggregation and toxicity. J Mol Biol 2008;377(1):136-47
  • Barkhordarian H, Emadi S, Schulz P, Sierks MR. Isolating recombinant antibodies against specific protein morphologies using atomic force microscopy and phage display technologies. Protein Eng Des Sel 2006;19(11):497-502
  • Zhou C, Emadi S, Sierks MR, Messer A. A human single-chain Fv intrabody blocks aberrant cellular effects of overexpressed alpha-synuclein. Mol Ther 2004;10(6):1023-31
  • Wang MS, Zameer A, Emadi S, Sierks MR. Characterizing antibody specificity to different protein morphologies by AFM. Langmuir 2009;25(2):912-8
  • Emadi S, Barkhordarian H, Wang MS, et al. Isolation of a human single chain antibody fragment against oligomeric alpha-synuclein that inhibits aggregation and prevents alpha-synuclein-induced toxicity. J Mol Biol 2007;368(4):1132-44
  • Emadi S, Kasturirangan S, Wang MS, et al. Detecting morphologically distinct oligomeric forms of alpha-synuclein. J Biol Chem 2009;284(17):11048-58
  • Greggio E, Cookson MR. Leucine-rich repeat kinase 2 mutations and Parkinson's disease: three questions. ASN Neuro 2009;1(1), published online 14 April 2009 published online 14 April 2009 doi: 10.1042/AN20090007
  • Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004;44(4):601-7
  • West AB, Moore DJ, Biskup S, et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA 2005;102(46):16842-7
  • Gloeckner CJ, Kinkl N, Schumacher A, et al. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 2006;15(2):223-32
  • Li X, Tan YC, Poulose S, et al. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants. J Neurochem 2007;103(1):238-47
  • West AB, Moore DJ, Choi C, et al. Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet 2007;16(2):223-32
  • Devine MJ, Lewis PA. Emerging pathways in genetic Parkinson's disease: tangles, Lewy bodies and LRRK2. FEBS J 2008;275(23):5748-57
  • Wszolek ZK, Pfeiffer RF, Tsuboi Y, et al. Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology 2004;62(9):1619-22
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002;297(5580):353-6
  • Paganetti P, Calanca V, Galli C, et al. Beta-site specific intrabodies to decrease and prevent generation of Alzheimer's Aβ peptide. J Cell Biol 2005;168(6):863-8
  • Paganetti PA, Lis M, Klafki HW, Staufenbiel M. Amyloid precursor protein truncated at any of the gamma-secretase sites is not cleaved to beta-amyloid. J Neurosci Res 1996;46(3):283-93
  • Zameer A, Kasturirangan S, Emadi S, et al. Anti-oligomeric Aβ single-chain variable domain antibody blocks Aβ-induced toxicity against human neuroblastoma cells. J Mol Biol 2008;384(4):917-28
  • Meli G, Visintin M, Cannistraci I, Cattaneo A. Direct in vivo intracellular selection of conformation-sensitive antibody domains targeting Alzheimer's amyloid-beta oligomers. J Mol Biol 2009;387(3):584-606
  • Fukuchi K, Tahara K, Kim HD, et al. Anti-Aβ single-chain antibody delivery via adeno-associated virus for treatment of Alzheimer's disease. Neurobiol Dis 2006;23(3):502-11
  • Levites Y, Jansen K, Smithson LA, et al. Intracranial adeno-associated virus-mediated delivery of anti-pan amyloid beta, amyloid beta40, and amyloid beta42 single-chain variable fragments attenuates plaque pathology in amyloid precursor protein mice. J Neurosci 2006;26(46):11923-8
  • Wang YJ, Pollard A, Zhong JH, et al. Intramuscular delivery of a single chain antibody gene reduces brain Aβ burden in a mouse model of Alzheimer's disease. Neurobiol Aging 2009;30(3):364-76
  • Campana V, Zentilin L, Mirabile I, et al. Development of antibody fragments for immunotherapy of prion diseases. Biochem J 2009;418(3):507-15
  • Donofrio G, Heppner FL, Polymenidou M, et al. Paracrine inhibition of prion propagation by anti-PrP single-chain Fv miniantibodies. J Virol 2005;79(13):8330-8
  • Vetrugno V, Cardinale A, Filesi I, et al. KDEL-tagged anti-prion intrabodies impair PrP lysosomal degradation and inhibit scrapie infectivity. Biochem Biophys Res Commun 2005;338(4):1791-7
  • Zuber C, Mitteregger G, Schuhmann N, et al. Delivery of single-chain antibodies (scFvs) directed against the 37/67 kDa laminin receptor into mice via recombinant adeno-associated viral vectors for prion disease gene therapy. J Gen Virol 2008;89(Pt 8):2055-61
  • Wuertzer CA, Sullivan MA, Qiu X, Federoff HJ. CNS delivery of vectored prion-specific single-chain antibodies delays disease onset. Mol Ther 2008;16(3):481-6
  • Filesi I, Cardinale A, Mattei S, Biocca S. Selective re-routing of prion protein to proteasomes and alteration of its vesicular secretion prevent PrPSc formation. J Neurochem 2007;101(6):1516-26

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.