511
Views
0
CrossRef citations to date
0
Altmetric
Review

The Impact of Cellular Environment on In Vitro Drug Screening

, , & ORCID Icon
Article: FSO900 | Received 22 Feb 2023, Accepted 17 Aug 2023, Published online: 07 Sep 2023

References

  • KrishnanR , ParkJA , SeowCY , LeePV , StewartAG. Cellular biomechanics in drug screening and evaluation: mechanopharmacology. Trends PharmacolSci.37(2), 87–100 (2016).
  • ArrowsmithJ , MillerP. Trial watch: phase II and phase III attrition rates 2011-2012. Nat. Rev. Drug Discov.12(8), 569 (2013).
  • CookD , BrownD , AlexanderRet al.Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov.13(6), 419–431 (2014).
  • LanghansSA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front. Pharmacol.9, 6 (2018).
  • KitaevaKV , RutlandCS , RizvanovAA , SolovyevaVV. Cell Culture Based in vitro Test Systems for Anticancer Drug Screening. Front. Bioeng. Biotechnol.8, 322 (2020).
  • JensenC , TengY. Is It Time to Start Transitioning From 2D to 3D Cell Culture?Front. Mol. Biosci.7, 33 (2020).
  • AntoniD , BurckelH , JossetE , NoelG. Three-dimensional cell culture: a breakthrough in vivo. Int. J. Mol. Sci.16(3), 5517–5527 (2015).
  • KapalczynskaM , KolendaT , PrzybylaWet al.2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch. Med. Sci.14(4), 910–919 (2018).
  • HayM , ThomasDW , CraigheadJL , EconomidesC , RosenthalJ. Clinical development success rates for investigational drugs. Nat. Biotechnol.32(1), 40–51 (2014).
  • ChiantoreMV , ManginoG , ZangrilloMSet al.Role of the microenvironment in tumourigenesis: focus on virus-induced tumors. Curr. Med. Chem.22(8), 958–974 (2015).
  • AljofanM , RiethmacherD. Anticancer activity of metformin: a systematic review of the literature. Future Sci. OA5(8), FSO410 (2019).
  • LocasaleJW , CantleyLC. Metabolic flux and the regulation of mammalian cell growth. Cell Metab.14(4), 443–451 (2011).
  • HouY , ZhouM , XieJ , ChaoP , FengQ , WuJ. High glucose levels promote the proliferation of breast cancer cells through GTPases. Breast Cancer (Dove Med Press)9, 429–436 (2017).
  • LiuM , ZhangZ , WangH , ChenX , JinC. Activation of AMPK by metformin promotes renal cancer cell proliferation under glucose deprivation through its interaction with PKM2. Int. J. Biol. Sci.15(3), 617–627 (2019).
  • HanL , MaQ , LiJet al.High glucose promotes pancreatic cancer cell proliferation via the induction of EGF expression and transactivation of EGFR. PLOS One6(11), e27074 (2011).
  • AljofanM , DingH. High glucose increases expression of cyclooxygenase-2, increases oxidative stress and decreases the generation of nitric oxide in mouse microvessel endothelial cells. J. Cell. Physiol.222(3), 669–675 (2010).
  • LiW , ZhangX , SangHet al.Effects of hyperglycemia on the progression of tumor diseases. J. Exp. Clin. Cancer Res.38(1), 327 (2019).
  • PothiwalaP , JainSK , YaturuS. Metabolic syndrome and cancer. Metab. Syndr. Relat. Disord.7(4), 279–288 (2009).
  • ThieryJP , AcloqueH , HuangRY , NietoMA. Epithelial-mesenchymal transitions in development and disease. Cell139(5), 871–890 (2009).
  • MaL , WeiJ , WanJet al.Low glucose and metformin-induced apoptosis of human ovarian cancer cells is connected to ASK1 via mitochondrial and endoplasmic reticulum stress-associated pathways. J. Exp. Clin. Cancer Res.38(1), 77 (2019).
  • Ramirez-PeinadoS , Leon-AnnicchiaricoCL , Galindo-MorenoJet al.Glucose-starved cells do not engage in prosurvival autophagy. J. Biol. Chem.288(42), 30387–30398 (2013).
  • XiH , BarredoJC , MerchanJR , LampidisTJ. Endoplasmic reticulum stress induced by 2-deoxyglucose but not glucose starvation activates AMPK through CaMKKbeta leading to autophagy. Biochem. Pharmacol.85(10), 1463–1477 (2013).
  • ZiechD , FrancoR , GeorgakilasAGet al.The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chem. Biol. Interact.188(2), 334–339 (2010).
  • FaridEAhmed. Molecular markers for early cancer detection. J. Environ. Sci., Heal Part C18(2), 75–125 (2000).
  • ToyokuniS. Molecular mechanisms of oxidative stress-induced carcinogenesis: from epidemiology to oxygenomics. IUBMB Life60(7), 441–447 (2008).
  • JagannathanL , CuddapahS , CostaM. Oxidative stress under ambient and physiological oxygen tension in tissue culture. Curr. Pharmacol. Rep.2(2), 64–72 (2016).
  • HalliwellB. Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed. J.37(3), 99–105 (2014).
  • HaTK , HansenAH , KolS , KildegaardHF , LeeGM. Baicalein Reduces Oxidative Stress in CHO Cell Cultures and Improves Recombinant Antibody Productivity. Biotechnol. J.13(3), e1700425 (2018).
  • EganaJT , ZambranoC , NunezMT , Gonzalez-BillaultC , MaccioniRB. Iron-induced oxidative stress modify tau phosphorylation patterns in hippocampal cell cultures. Biometals16(1), 215–223 (2003).
  • TsiapalisD , RibeiroS , DePieri Aet al.Designing Microenvironments for Optimal Outcomes in Tissue Engineering and Regenerative Medicine: From Biopolymers to Culturing Conditions. In: Encyclopedia of Tissue Engeneering and Regenerative Medicine.ReisRL ( Ed.). Academic Press, Guimarães, Portugal, 119–130 (2019).
  • EalesKL , HollinsheadKE , TennantDA. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis5(1), e190 (2016).
  • GriffinMD , AbbottRD. Bioreactors and microphysiological systems for adipose-based pharmacologic screening. In: Scinetific Principles of Adipose Stem Cells.KokaiL, MarraK, RubinP ( Eds). MA, USA, 121–146 (2022).
  • NamH , FunamotoK , JeonJS. Cancer cell migration and cancer drug screening in oxygen tension gradient chip. Biomicrofluidics14(4), 044107 (2020).
  • WeiR , LiuS , ZhangS , MinL , ZhuS. Cellular and Extracellular Components in Tumor Microenvironment and Their Application in Early Diagnosis of Cancers. Anal. Cell Pathol. (Amst)2020, 6283796 (2020).
  • LennonDP , EdmisonJM , CaplanAI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J. Cell. Physiol.187(3), 345–355 (2001).
  • GenbacevO , ZhouY , LudlowJW , FisherSJ. Regulation of human placental development by oxygen tension. Science277(5332), 1669–1672 (1997).
  • D'IppolitoG , DiabiraS , HowardGA , RoosBA , SchillerPC. Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone39(3), 513–522 (2006).
  • LeeS , ShantiA. Effect of Exogenous pH on Cell Growth of Breast Cancer Cells. Int. J. Mol. Sci.22(18), (2021).
  • RWP. Intracellular pH Regulation. In: Cell Physiology Source Book.NS ( Ed.). Academic Press, 303–321 (2012).
  • CaseyJR , GrinsteinS , OrlowskiJ. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell. Biol.11(1), 50–61 (2010).
  • Vander HeidenMG , CantleyLC , ThompsonCB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324(5930), 1029–1033 (2009).
  • WebbBA , ChimentiM , JacobsonMP , BarberDL. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer11(9), 671–677 (2011).
  • GatenbyRA , GilliesRJ. Why do cancers have high aerobic glycolysis?Nat. Rev. Cancer4(11), 891–899 (2004).
  • ChicheJ , Brahimi-HornMC , PouyssegurJ. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J. Cell Mol. Med.14(4), 771–794 (2010).
  • KolosenkoI , AvnetS , BaldiniN , ViklundJ , DeMilito A. Therapeutic implications of tumor interstitial acidification. Semin. Cancer Biol.43, 119–133 (2017).
  • PersiE , Duran-FrigolaM , DamaghiMet al.Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat. Commun.9(1), 2997 (2018).