718
Views
0
CrossRef citations to date
0
Altmetric
Data Note

Data Sets of Human and Mouse Protein Kinase Inhibitors With Curated Activity Data Including Covalent Inhibitors

& ORCID Icon
Article: FSO892 | Received 27 May 2023, Accepted 31 Jul 2023, Published online: 16 Aug 2023

References

  • FergusonFM , GrayNS. Kinase inhibitors: the road ahead. Nat. Rev. Drug Discov.17, 353–376 (2018).
  • CohenP , CrossD , JännePA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat. Rev. Drug Discov.20, 551–569 (2021).
  • AttwoodMM , FabbroD , SokolovAV , KnappS , SchiöthHB. Trends in kinase drug discovery: targets, indications and inhibitor design. Nat. Rev. Drug Discov.20, 839–861 (2021).
  • ManningG , WhyteD , MartinezR , HunterT , SudarsanamS. The protein kinase complement of the human genome. Science298, 1912–1934 (2002).
  • Ayala-AguileraCC , ValeroT , Lorente-MaciasA , BaillacheDJ , CrokeS , Unciti-BrocetaA. Small molecule kinase inhibitor drugs (1995–2021): medical indication, pharmacology, and synthesis. J. Med. Chem.65, 1047–1131 (2021).
  • GavrinLK , SaiahE. Approaches to discover non-ATP site kinase inhibitors. Med. Chem. Comm.4, 41–51 (2013).
  • MüllerS , ChaikuadA , GrayNS , KnappS. The ins and outs of selective kinase inhibitor development. Nat. Chem. Biol.11, 818–821 (2015).
  • LaufkötterO , HuH , MiljkovićF , BajorathJ. Structure- and similarity-based survey of allosteric kinase inhibitors, activators, and closely related compounds. J. Med. Chem.65, 922–934 (2022).
  • AbdeldayemA , RaoufYS , ConstantinescuSN , MorigglR , GunningPT. Advances in covalent kinase inhibition. Chem. Soc. Rev.49, 2617–2687 (2020).
  • ChaikuadA , KochP , LauferSA , KnappS. The cysteinome of protein kinases as a target in drug development. Angew. Chem. Int. Ed.57, 4372–4385 (2018).
  • GehringerM , LauferSA. Emerging and re-emerging warheads for targeted covalent inhibitors. J. Med. Chem.62, 5673–5724 (2019).
  • HuY , FurtmannN , BajorathJ. Current compound coverage of the kinome. J. Med. Chem.58, 30–40 (2015).
  • MiljkovićF , BajorathJ. Computational analysis of kinase inhibitors identifies promiscuity cliffs across the human kinome. ACS Omega3, 17295–17308 (2018).
  • The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res.45, D158–D169 (2017).
  • GaultonA , BellisLJ , BentoAPet al.ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res.40, D1100–D1107 (2012).
  • LiuT , LinY , WenX , JorissenRN , GilsonMK. BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res.35, D198–D201 (2007).
  • WeiningerD. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci.28, 31–36 (1988).
  • NavejaJJ , VogtM , StumpfeD , Medina-FrancoJL , BajorathJ. Systematic extraction of analogue series from large compound collections using a new computational compound-core relationship method. ACS Omega4, 1027–1032 (2019).
  • McAulayK , BilslandA , BonM. Reactivity of covalent fragments and their role in fragment based drug discovery. Pharmaceuticals15, 1366 (2022).
  • XerxaE , MiljkovićF , BajorathJ. Data-driven global assessment of protein kinase inhibitors with emphasis on covalent compounds. J. Med. Chem.66, 7657–7665 (2023).
  • DuH , GaoJ , WengGet al.CovalentInDB: a comprehensive database facilitating the discovery of covalent inhibitors. Nucleic Acids Res.49, D1122–D1129 (2021).
  • https://doi.org/10.5281/zenodo.7970944