70
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

AC024896.1/miR-363-3p Axis Regulates the Malignant Progression of Acute Myeloid Leukemia by Cuproptosis-Related Gene MYO1B

, , &
Pages 17-30 | Received 09 Dec 2023, Accepted 10 Mar 2024, Published online: 24 Mar 2024

References

  • Khwaja A, Bjorkholm M, Gale RE, et al. Acute myeloid leukaemia. Nat Rev Dis Primers. 2016;2(1):16010. doi:10.1038/nrdp.2016.10
  • Blackburn LM, Bender S, Brown S. Acute leukemia: diagnosis and treatment. In: Seminars in Oncology Nursing. Elsevier; 2019.
  • Pui CH, Nichols KE, Yang JJ. Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nat Rev Clin Oncol. 2019;16(4):227–240. doi:10.1038/s41571-018-0136-6
  • Buschner G, Feuerecker B, Spinner S, et al. Differentiation of acute myeloid leukemia (AML) cells with ATRA reduces 18 F-FDG uptake and increases sensitivity towards ABT-737-induced apoptosis. Leuk Lymphoma. 2021;62(3):630–639. doi:10.1080/10428194.2020.1839648
  • Tamamyan G, Kadia T, Ravandi F, et al. Frontline treatment of acute myeloid leukemia in adults. Crit Rev Oncol Hematol. 2017;110:20–34. doi:10.1016/j.critrevonc.2016.12.004
  • Estey E, Levine RL, Lowenberg B. Current challenges in clinical development of ”targeted therapies”: the case of acute myeloid leukemia. Blood. 2015;125(16):2461–2466. doi:10.1182/blood-2015-01-561373
  • Ge S, Zhu G, Yi Y. Extramedullary plasmacytoma of the larynx: literature review and report of a case who subsequently developed acute myeloid leukemia. Oncol Lett. 2018;16(3):2995–3004. doi:10.3892/ol.2018.8992
  • Kayser S, Levis MJ. Advances in targeted therapy for acute myeloid leukaemia. Br J Haematol. 2018;180(4):484–500. doi:10.1111/bjh.15032
  • Goto H. Childhood relapsed acute lymphoblastic leukemia: biology and recent treatment progress. Pediatr Int. 2015;57(6):1059–1066. doi:10.1111/ped.12837
  • Guo Y, Luo F, Liu Q, et al. Regulatory non-coding RNA s in acute myocardial infarction. J Cell Mol Med. 2017;21(5):1013–1023. doi:10.1111/jcmm.13032
  • Kharel P, Balaratnam S, Beals N, et al. The role of RNA G-quadruplexes in human diseases and therapeutic strategies. Wiley Interdiscip Rev RNA. 2020;11(1):e1568. doi:10.1002/wrna.1568
  • Almamun M, Levinson BT, van Swaay AC, et al. Integrated methylome and transcriptome analysis reveals novel regulatory elements in pediatric acute lymphoblastic leukemia. Epigenetics. 2015;10(9):882–890. doi:10.1080/15592294.2015.1078050
  • Falzone L, Lupo L, Salemi R, et al. Identification of novel microRNAs and their diagnostic and prognostic significance in oral cancer. Cancers. 2019;11(5):610. doi:10.3390/cancers11050610
  • Mesrian Tanha H, Mojtabavi Naeini M, Rahgozar S, et al. Integrative computational in-depth analysis of dysregulated miRNA-mRNA interactions in drug-resistant pediatric acute lymphoblastic leukemia cells: an attempt to obtain new potential gene-miRNA pathways involved in response to treatment. Tumour Biol. 2016;37(6):7861–7872. doi:10.1007/s13277-015-4553-1
  • Trino S, Lamorte D, Caivano A, et al. MicroRNAs as new biomarkers for diagnosis and prognosis, and as potential therapeutic targets in acute myeloid leukemia. Int J Mol Sci. 2018;19(2):460. doi:10.3390/ijms19020460
  • Wang LJ, Qiu B-Q, Yuan -M-M, et al. Identification and validation of dilated cardiomyopathy-related genes via bioinformatics analysis. Int J Gen Med. 2022;15:3663–3676. doi:10.2147/IJGM.S350954
  • Lopez-Pajares V. Long non-coding RNA regulation of gene expression during differentiation. Pflugers Arch. 2016;468(6):971–981. doi:10.1007/s00424-016-1809-6
  • Koscianska E, Kozlowska E, Fiszer A. Regulatory potential of competing endogenous RNAs in myotonic dystrophies. Int J Mol Sci. 2021;22(11):6089. doi:10.3390/ijms22116089
  • Yuan CL, Li H, Zhu L, et al. Aberrant expression of long noncoding RNA PVT1 and its diagnostic and prognostic significance in patients with gastric cancer. Neoplasma. 2016;63(3):442–449. doi:10.4149/314_150825N45
  • Guo Q, Cheng Y, Liang T, et al. Comprehensive analysis of lncRNA-mRNA co-expression patterns identifies immune-associated lncRNA biomarkers in ovarian cancer malignant progression. Sci Rep. 2015;5(1):17683. doi:10.1038/srep17683
  • Zhou M, Zhao H, Xu W, et al. Discovery and validation of immune-associated long non-coding RNA biomarkers associated with clinically molecular subtype and prognosis in diffuse large B cell lymphoma. Mol Cancer. 2017;16(1):16. doi:10.1186/s12943-017-0580-4
  • Chandra Gupta S, Nandan Tripathi Y. Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int J Cancer. 2017;140(9):1955–1967. doi:10.1002/ijc.30546
  • Sebastiani P, Gurinovich A, Nygaard M, et al. APOE alleles and extreme human longevity. J Gerontol a Biol Sci Med Sci. 2019;74(1):44–51. doi:10.1093/gerona/gly174
  • Chen D, Wang M, Jiang X, et al. Comprehensive analysis of ZFPM2-AS1 prognostic value, immune microenvironment, drug sensitivity, and co-expression network: from gastric adenocarcinoma to pan-cancers. Discov Oncol. 2022;13(1):24. doi:10.1007/s12672-022-00487-0
  • Qu J, Li M, Zhong W, et al. Competing endogenous RNA in cancer: a new pattern of gene expression regulation. International Journal of Clinical and Experimental Medicine. 2015;8(10):17110.
  • Cheng Y, Su Y, Wang S, et al. Identification of circRNA-lncRNA-miRNA-mRNA competitive endogenous RNA network as novel prognostic markers for acute myeloid leukemia. Genes. 2020;11(8):868. doi:10.3390/genes11080868
  • Cobine PA, Brady DCJMC. Cuproptosis: cellular and molecular mechanisms underlying copper-induced cell death. Molecular Cell. 2022;82(10):1786–1787. doi:10.1016/j.molcel.2022.05.001
  • da Silva DA, De Luca A, Squitti R, et al. Copper in tumors and the use of copper-based compounds in cancer treatment. Journal of Inorganic Biochemistry. 2022;226:111634. doi:10.1016/j.jinorgbio.2021.111634
  • Chen YH, Xu N-Z, Hong C, et al. Myo1b promotes tumor progression and angiogenesis by inhibiting autophagic degradation of HIF-1alpha in colorectal cancer. Cell Death Dis. 2022;13(11):939. doi:10.1038/s41419-022-05397-1
  • Wang A, Dai H, Gong Y, et al. ANLN-induced EZH2 upregulation promotes pancreatic cancer progression by mediating miR-218-5p/LASP1 signaling axis. J Exp Clin Cancer Res. 2019;38(1):347. doi:10.1186/s13046-019-1340-7
  • Wen L-J, Hu X-L, Li C-Y, et al. Myosin 1b promotes migration, invasion and glycolysis in cervical cancer via ERK/HIF-1α pathway. American Journal of Translational Research. 2021;13(11):12536.
  • Sharma A, Yadav D, Rao P, et al. Identification of potential therapeutic targets associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Computers in Biology and Medicine. 2022;146:105688. doi:10.1016/j.compbiomed.2022.105688
  • Piddock RE, Bowles KM, Rushworth SA. The role of PI3K isoforms in regulating bone marrow microenvironment signaling focusing on acute myeloid leukemia and multiple myeloma. Cancers. 2017;9(4):29. doi:10.3390/cancers9040029
  • Newell LF, Cook RJJB. Advances in acute myeloid leukemia. BMJ. 2021;375.
  • Pan JQ, Zhang Y-Q, Wang J-H, et al. lncRNA co-expression network model for the prognostic analysis of acute myeloid leukemia. Int J Mol Med. 2017;39(3):663–671. doi:10.3892/ijmm.2017.2888
  • Liang C, Li Y, Wang L-N, et al. Up-regulated miR-155 is associated with poor prognosis in childhood acute lymphoblastic leukemia and promotes cell proliferation targeting ZNF238. Hematology. 2021;26(1):16–25. doi:10.1080/16078454.2020.1860187
  • Zhao TF, Jia H-Z, Zhang -Z-Z, et al. LncRNA H19 regulates ID2 expression through competitive binding to HSA-miR-19a/b in acute myelocytic leukemia. Mol Med Rep. 2017;16(3):3687–3693. doi:10.3892/mmr.2017.7029
  • Uthaya Kumar DB, Williams A. Long non-coding RNAs in immune regulation and their potential as therapeutic targets. Int Immunopharmacol. 2020;81:106279. doi:10.1016/j.intimp.2020.106279
  • Zhao T, Liu XJERMPS. LncRNA-H19 inhibits apoptosis of acute myeloid leukemia cells via targeting miR-29a-3p. European Review for Medical and Pharmacological Sciences. 2019;23(3 Suppl):224–231. doi:10.26355/eurrev_201908_18651
  • Ng M, Heckl D, Klusmann JH. The regulatory roles of long noncoding RNAs in acute myeloid leukemia. Front Oncol. 2019;9:570. doi:10.3389/fonc.2019.00570
  • Hassani S, Ghaffari P, Chahardouli B, et al. Disulfiram/copper causes ROS levels alteration, cell cycle inhibition, and apoptosis in acute myeloid leukaemia cell lines with modulation in the expression of related genes. Biomed Pharmacother. 2018;99:561–569. doi:10.1016/j.biopha.2018.01.109
  • Banerjee K, Das S, Sarkar A, et al. A copper chelate induces apoptosis and overcomes multidrug resistance in T-cell acute lymphoblastic leukemia through redox imbalance and inhibition of EGFR/PI3K/Akt expression. Biomed Pharmacother. 2016;84:71–92. doi:10.1016/j.biopha.2016.08.056
  • Mentes A, Huehn A, Liu X, et al. High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proc Natl Acad Sci U S A. 2018;115(6):1292–1297. doi:10.1073/pnas.1718316115
  • Li SH, Qian L, Chen Y-H, et al. Targeting MYO1B impairs tumorigenesis via inhibiting the SNAI2/cyclin D1 signaling in esophageal squamous cell carcinoma. Journal of Cellular Physiology. 2022;237(9):3671–3686. doi:10.1002/jcp.30831
  • Naughton FB, Becker P, Brotherton D, et al. Substrate binding and conformational changes of the bile acid symporter ASBTNM. Biophys J. 2019;116(3):552a–553a. doi:10.1016/j.bpj.2018.11.2972
  • Wee NK, Weinstein DC, Fraser ST, et al. The mammalian copper transporters CTR1 and CTR2 and their roles in development and disease. Int J Biochem Cell Biol. 2013;45(5):960–963. doi:10.1016/j.biocel.2013.01.018
  • Yamada Y, Koshizuka K, Hanazawa T, et al. Passenger strand of miR-145-3p acts as a tumor-suppressor by targeting MYO1B in head and neck squamous cell carcinoma. Int J Oncol. 2018;52(1):166–178. doi:10.3892/ijo.2017.4190
  • Shimonosono M, Idichi T, Seki N, et al. Molecular pathogenesis of esophageal squamous cell carcinoma: identification of the antitumor effects of miR‑145‑3p on gene regulation. Int J Oncol. 2019;54(2):673–688. doi:10.3892/ijo.2018.4657