388
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Beneficial Effect of Toxoplasma gondii Infection on the Prognosis of Breast Cancer Was Modified by Cytokines

ORCID Icon, ORCID Icon, , , & ORCID Icon
Pages 469-481 | Received 11 Feb 2023, Accepted 11 Apr 2023, Published online: 24 Apr 2023

References

  • Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet. 2004;363(9425):1965–1976. doi:10.1016/s0140-6736(04)16412-x
  • de Barros RAM, Torrecilhas AC, Marciano MAM, Mazuz ML, Pereira-Chioccola VL, Fux B. Toxoplasmosis in human and animals around the world. diagnosis and perspectives in the one health approach. Acta Trop. 2022;231:106432. doi:10.1016/j.actatropica.2022.106432
  • Megli CJ, Coyne CB. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol. 2022;20(2):67–82. doi:10.1038/s41579-021-00610-y
  • Robert-Gangneux F, Dardé ML. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev. 2012;25(2):264–296. doi:10.1128/cmr.05013-11
  • Darani HY, Yousefi M. Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy. Future Oncol. 2012;8(12):1529–1535. doi:10.2217/fon.12.155
  • Chen J, Liao W, Peng H. Toxoplasma gondii infection possibly reverses host immunosuppression to restrain tumor growth. Front Cell Infect Microbiol. 2022;12:959300. doi:10.3389/fcimb.2022.959300
  • Baird JR, Byrne KT, Lizotte PH, et al. Immune-mediated regression of established B16F10 melanoma by intratumoral injection of attenuated Toxoplasma gondii protects against rechallenge. J Immunol. 2013;190(1):469–478. doi:10.4049/jimmunol.1201209
  • Baird JR, Fox BA, Sanders KL, et al. Avirulent Toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment. Cancer Res. 2013;73(13):3842–3851. doi:10.1158/0008-5472.Can-12-1974
  • Sanders KL, Fox BA, Bzik DJ. Attenuated Toxoplasma gondii stimulates immunity to pancreatic cancer by manipulation of myeloid cell populations. Cancer Immunol Res. 2015;3(8):891–901. doi:10.1158/2326-6066.Cir-14-0235
  • Lu G, Zhou J, Zhao YH, Li QL, Gao YY, Wang L. Transcriptome sequencing investigated the tumor-related factors changes after T. gondii infection. Front Microbiol. 2019;10:181. doi:10.3389/fmicb.2019.00181
  • Xu LQ, Yao LJ, Jiang D, et al. A uracil auxotroph Toxoplasma gondii exerting immunomodulation to inhibit breast cancer growth and metastasis. Parasit Vectors. 2021;14(1):601. doi:10.1186/s13071-021-05032-6
  • Kalantari N, Ahangar Darabi Z, Siadati S, et al. Detection of Toxoplasma gondii DNA in malignant breast tissues in breast cancer patients. Int J Mol Cell Med. 2017;6(3):190–196. doi:10.22088/acadpub.BUMS.6.3.190
  • Anvari D, Sharif M, Sarvi S, et al. Seroprevalence of Toxoplasma gondii infection in cancer patients: a systematic review and meta-analysis. Microb Pathog. 2019;129:30–42. doi:10.1016/j.micpath.2019.01.040
  • Cong W, Liu GH, Meng QF, et al. Toxoplasma gondii infection in cancer patients: prevalence, risk factors, genotypes and association with clinical diagnosis. Cancer Lett. 2015;359(2):307–313. doi:10.1016/j.canlet.2015.01.036
  • Kalantari N, Ghaffari S, Bayani M, et al. Preliminary study on association between toxoplasmosis and breast cancer in Iran. Asian Pac J Trop Biomed. 2015;5(1):44–47. doi:10.1016/S2221-1691(15)30169-6
  • Thirugnanam S, Rout N, Gnanasekar M. Possible role of Toxoplasma gondii in brain cancer through modulation of host microRNAs. Infect Agent Cancer. 2013;8(1):8. doi:10.1186/1750-9378-8-8
  • Assim MM, Saheb EJ. Serum levels of Il-12 and Il-23 in breast cancer patients infected with toxoplasma gondii: a case-control study. Iran J Parasitol. 2020;15(4):466–474. doi:10.18502/ijpa.v15i4.4850
  • Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI, Morales-Montor J. The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res. 2015;35(1):1–16. doi:10.1089/jir.2014.0026
  • Ye H, Tang LY, Liang ZZ, et al. Effects of infection-induced fever and the interaction with IL6 rs1800796 polymorphism on the prognosis of breast cancer. Cancer Epidemiol Biomarkers Prev. 2022;31(11):2030–2037. doi:10.1158/1055-9965.Epi-22-0498
  • He JR, Tang LY, Yu DD, et al. Epstein-Barr virus and breast cancer: serological study in a high-incidence area of nasopharyngeal carcinoma. Cancer Lett. 2011;309(2):128–136. doi:10.1016/j.canlet.2011.05.012
  • Wang L, He LY, Meng DD, et al. Seroprevalence and genetic characterization of Toxoplasma gondii in cancer patients in Anhui Province, Eastern China. Parasit Vectors. 2015;8:162. doi:10.1186/s13071-015-0778-5
  • Jabeen S, Espinoza JA, Torland LA, et al. Noninvasive profiling of serum cytokines in breast cancer patients and clinicopathological characteristics. Oncoimmunology. 2019;8(2):e1537691. doi:10.1080/2162402x.2018.1537691
  • Yang MJ, Guo J, Ye YF, et al. Decreased macrophage inflammatory protein (MIP)-1α and MIP-1β increase the risk of developing nasopharyngeal carcinoma. Cancer Commun (Lond). 2018;38(1):7. doi:10.1186/s40880-018-0279-y
  • Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res. 2004;10(21):7252–7259. doi:10.1158/1078-0432.Ccr-04-0713
  • Hughes-Austin JM, Deane KD, Derber LA, et al. Multiple cytokines and chemokines are associated with rheumatoid arthritis-related autoimmunity in first-degree relatives without rheumatoid arthritis: Studies of the Aetiology of Rheumatoid Arthritis (SERA). Ann Rheum Dis. 2013;72(6):901–907. doi:10.1136/annrheumdis-2012-201505
  • Hunter CA, Yu D, Gee M, et al. Cutting edge: systemic inhibition of angiogenesis underlies resistance to tumors during acute toxoplasmosis. J Immunol. 2001;166(10):5878–5881. doi:10.4049/jimmunol.166.10.5878
  • Weiss LM, Dubey JP. Toxoplasmosis: a history of clinical observations. Int J Parasitol. 2009;39(8):895–901. doi:10.1016/j.ijpara.2009.02.004
  • Verras GI, Tchabashvili L, Mulita F, et al. Micropapillary breast carcinoma: from molecular pathogenesis to prognosis. Breast Cancer (Dove Med Press). 2022;14:41–61. doi:10.2147/bctt.S346301
  • Verras GI, Mulita F, Tchabashvili L, et al. A rare case of invasive micropapillary carcinoma of the breast. Prz Menopauzalny. 2022;21(1):73–80. doi:10.5114/pm.2022.113834
  • Abdollahi A, Razavian I, Razavian E, et al. Toxoplasma gondii infection/exposure and the risk of brain tumors: a systematic review and meta-analysis. Cancer Epidemiol. 2022;77:102119. doi:10.1016/j.canep.2022.102119
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi:10.1016/j.cell.2011.02.013
  • Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr). 2020;43(1):1–18. doi:10.1007/s13402-019-00489-1
  • Kim JW, Lee S, Kim HS, et al. Prognostic effects of cytokine levels on patients treated with taxane and zoledronic acid for metastatic breast cancer in bone (BEAT-ZO) (KCSG BR 10-13). Cytokine. 2021;142:155487. doi:10.1016/j.cyto.2021.155487
  • Savioli F, Morrow ES, Dolan RD, et al. Prognostic role of preoperative circulating systemic inflammatory response markers in primary breast cancer: meta-analysis. Br J Surg. 2022;109:1206–1215. doi:10.1093/bjs/znac319
  • Verras GI, Tchabashvili L, Chlorogiannis DD, Mulita F, Argentou MI. Updated clinical evidence on the role of adipokines and breast cancer: a review. Cancers (Basel). 2023;15(5):1572. doi:10.3390/cancers15051572
  • Ono M. Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci. 2008;99(8):1501–1506. doi:10.1111/j.1349-7006.2008.00853.x
  • de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Invest. 2020;130(10):5074–5087. doi:10.1172/jci137552
  • Kim JO, Jung SS, Kim SY, et al. Inhibition of Lewis lung carcinoma growth by Toxoplasma gondii through induction of Th1 immune responses and inhibition of angiogenesis. J Korean Med Sci. 2007;22:S38–46. doi:10.3346/jkms.2007.22.S.S38
  • Chung AS, Wu X, Zhuang G, et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med. 2013;19(9):1114–1123. doi:10.1038/nm.3291
  • He J, Wang L, Zhang C, et al. Interleukin-9 promotes tumorigenesis through augmenting angiogenesis in non-small cell lung cancer. Int Immunopharmacol. 2019;75:105766. doi:10.1016/j.intimp.2019.105766
  • Mao F, Yang Y, Chen Y, et al. Seroprevalence and risk factors of toxoplasma gondii infection among high-risk populations in Jiangsu Province, Eastern China. Front Cell Infect Microbiol. 2021;11:783654. doi:10.3389/fcimb.2021.783654
  • Zhu YC, Elsheikha HM, Wang JH, et al. Synergy between Toxoplasma gondii type I Δ GRA17 immunotherapy and PD-L1 checkpoint inhibition triggers the regression of targeted and distal tumors. J Immunother Cancer. 2021;9(11):e002970. doi:10.1136/jitc-2021-002970