134
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Quantitative Assessment Characteristics of Small Pulmonary Vessel Remodelling in Populations at High Risk for COPD and Smokers Using Low-Dose CT

, , , ORCID Icon, , & ORCID Icon show all
Pages 51-62 | Received 11 Sep 2023, Accepted 15 Dec 2023, Published online: 05 Jan 2024

References

  • Soriano JB, Polverino F, Cosio BG. What is early COPD and why is it important? Eur Respir J. 2018;52(6):1801448. doi:10.1183/13993003.01448-2018
  • Jobst BJ, Weinheimer O, Buschulte T, et al. Longitudinal airway remodeling in active and past smokers in a lung cancer screening population. Eur Radiol. 2019;29(6):2968–2980. doi:10.1007/s00330-018-5890-4
  • Takayanagi S, Kawata N, Tada Y, et al. Longitudinal changes in structural abnormalities using MDCT in COPD: do the CT measurements of airway wall thickness and small pulmonary vessels change in parallel with emphysematous progression? Int J Chronic Obstr. 2017;12:551–560. doi:10.2147/COPD.S121405
  • Balkissoon R. Journal Club-COPD2020 Update. Global Initiative for Chronic Obstructive Lung Disease 2020 Report and the Journal of the COPD Foundation Special Edition, Moving to a New Definition for COPD: ”COPDGene® 2019”. Chronic Obstr Pulm Dis. 2019;6(4):64–72. doi:10.15326/jcopdf.7.1.2020.0133
  • Dransfield M, Stolz D, Kleinert S. Lancet COPD COMMISSIONERSTOWARDS eradication of chronic obstructive pulmonary disease: a lancet commission published correction appears in lancet. Lancet. 2019;393(10183):1786–1788. doi:10.1016/S0140-6736(19)30950-X
  • Venkatesan P. GOLD COPD report: 2023 update. Lancet Respir Med. 2023;11(1):18. doi:10.1016/S2213-2600(22)00494-5
  • Pu Y, Zhou X, Zhang D, et al. Re-defining high risk COPD with parameter response mapping based on machine learning models. Int J Chron Obstruct Pulmon Dis. 2022;17:2471–2483. doi:10.2147/COPD.S369904
  • Synn AJ, Li W, San José Estépar R, et al. Radiographic pulmonary vessel volume, lung function and airways disease in the Framingham Heart Study. Eur Respir J. 2019;54(3):1900408. doi:10.1183/13993003.00408-2019
  • Hueper K, Vogel-Claussen J, Parikh MA, et al. Pulmonary microvascular blood flow in mild chronic obstructive pulmonary disease and emphysema. the mesa COPD study. Am J Respir Crit Care Med. 2015;192(5):570–580. doi:10.1164/rccm.201411-2120OC
  • Santos S, Peinado VI, Ramírez J, et al. Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. Eur Respir J. 2002;19(4):632–638. doi:10.1183/09031936.02.00245902
  • Ferrer E, Peinado VI, Díez M, et al. Effects of cigarette smoke on endothelial function of pulmonary arteries in the Guinea pig. Respir Res. 2009;10(1):76. doi:10.1186/1465-9921-10-76
  • Fan L, Xia Y, Guan Y, et al. Capability of differentiating smokers with normal pulmonary function from COPD patients: a comparison of CT pulmonary volume analysis and MR perfusion imaging. Eur Radiol. 2013;23(5):1234–1241. doi:10.1007/s00330-012-2729-2
  • Xia Y, Guan Y, Fan L, et al. Dynamic contrast enhanced magnetic resonance perfusion imaging in high risk smokers and smoking-related COPD: correlations with pulmonary function tests and quantitative computed tomography. COPD. 2014;11(5):510–520. doi:10.3109/15412555.2014.948990
  • Estépar RS, Kinney GL, Black-Shinn JL, et al. Computed tomographic measures of pulmonary vascular morphology in smokers and their clinical implications. Am J Respir Crit Care Med. 2013;188(2):231–239. doi:10.1164/rccm.201301-0162OC
  • Jimborean G, Ianoși ES, Postolache P, et al. The role of quantitative computed tomography in the diagnosis of chronic obstructive pulmonary disease. Pneumologia. 2016;65(4):184–188.
  • Matsuoka S, Yamashiro T, Matsushita S, et al. Relationship between quantitative CT of pulmonary small vessels and pulmonary perfusion. AJR Am J Roentgenol. 2014;202(4):719–724. doi:10.2214/AJR.13.11027
  • Cho YH, Lee SM, Seo JB, et al. Quantitative assessment of pulmonary vascular alterations in chronic obstructive lung disease: associations with pulmonary function test and survival in the KOLD cohort. Eur J Radiol. 2018;108:276–282. doi:10.1016/j.ejrad.2018.09.013
  • Raherison C, Girodet PO. Epidemiology of COPD. Eur Respir Rev. 2009;18(114):213–221. doi:10.1183/09059180.00003609
  • Phillips AM. The influence of environmental factors in chronic bronchitis. J Occup Med. 1963;5:468–475.
  • Salvi S. Tobacco smoking and environmental risk factors for chronic obstructive pulmonary disease. Clin Chest Med. 2014;35(1):17–27. doi:10.1016/j.ccm.2013.09.011
  • Zhou Y, Wang D, Liu S, et al. The association between BMI and COPD: the results of two population-based studies in Guangzhou, China. COPD. 2013;10(5):567–572. doi:10.3109/15412555.2013.781579
  • Xiao YL, Li HY, Lin Y, et al. Prevalence of chronic obstructive pulmonary disease and associated risk factors. Chin J Behav Med Sci. 2005;14(9):786–787.
  • Jiang RG, Luo DS, Huang CP, Li WM. The prevalence of chronic obstructive pulmonary disease and correlated risk factors in the rural areas in Hubei province. Chin J Epidemiol. 2007;28(10):976–979.
  • Ran PX, Wang C, Yao WZ, et al. A study on the correlation of body mass index with chronic obstructive pulmonary disease and quality of life. Zhonghua Jie He He Hu Xi Za Zhi. 2007;30(1):18–22.
  • Berg K, Wright JL. The pathology of chronic obstructive pulmonary disease: progress in the 20th and 21st centuries. Arch Pathol Lab Med. 2016;140(12):1423–1428. doi:10.5858/arpa.2015-0455-RS
  • Tuder RM, Cool CD. Pulmonary arteries and microcirculation in COPD with pulmonary hypertension: bystander or culprit? Chest. 2019;156(1):4–6. doi:10.1016/j.chest.2019.04.100
  • Scarrow GD. The pulmonary angiogram in chronic bronchitis and emphysema. Proc R Soc Med. 1965;58(9):684–687. doi:10.1177/003591576505800907
  • Jacobson G, Turner AF, Balchum OJ, et al. Vascular changes in pulmonary emphysema. The radiologic evaluation by selective and peripheral pulmonary wedge angiography. Am J Roentgenol Radium Ther Nucl Med. 1967;100(2):374–396. doi:10.2214/ajr.100.2.374
  • Ohno Y, Yui M, Yoshikawa T, et al. 3D Oxygen-Enhanced MRI at 3T MR system: comparison with thin-section CT of quantitative capability for pulmonary functional loss assessment and clinical stage classification of COPD in smokers. J Magn Reson Imaging. 2021;53(4):1042–1051. doi:10.1002/jmri.27441
  • Humbert M, Guignabert C, Bonnet S, et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J. 2019;53(1):1801887. doi:10.1183/13993003.01887-2018
  • Sakao S, Voelkel NF, Tatsumi K. The vascular bed in COPD: pulmonary hypertension and pulmonary vascular alterations. Eur Respir Rev. 2014;23(133):350–355. doi:10.1183/09059180.00007913
  • Washko GR, Nardelli P, Ash SY, et al. Arterial vascular pruning, right ventricular size, and clinical outcomes in chronic obstructive pulmonary disease. A longitudinal observational study. Am J Respir Crit Care Med. 2019;200(4):454–461. doi:10.1164/rccm.201811-2063OC
  • Wright JL, Levy RD, Churg A. Pulmonary hypertension in chronic obstructive pulmonary disease: current theories of pathogenesis and their implications for treatment. Thorax. 2005;60(7):605–609. doi:10.1136/thx.2005.042994
  • Mashimo S, Chubachi S, Tsutsumi A, et al. Relationship between diminution of small pulmonary vessels and emphysema in chronic obstructive pulmonary disease. Clin Imaging. 2017;46:85–90. doi:10.1016/j.clinimag.2017.07.008
  • Mandlik DS, Mandlik SK. New perspectives in bronchial asthma: pathological, immunological alterations, biological targets, and pharmacotherapy. Immunopharmacol Immunotoxicol. 2020;42(6):521–544. doi:10.1080/08923973.2020.1824238
  • Harkness LM, Kanabar V, Sharma HS, Westergren-Thorsson G, Larsson-Callerfelt AK. Pulmonary vascular changes in asthma and COPD. Pulm Pharmacol Ther. 2014;29(2):144–155. doi:10.1016/j.pupt.2014.09.003
  • Park SW, Lim MN, Kim WJ, et al. Quantitative assessment the longitudinal changes of pulmonary vascular counts in chronic obstructive pulmonary disease. Respir Res. 2022;23(1):29. doi:10.1186/s12931-022-01953-7
  • Synn AJ, Zhang C, Washko GR, et al. Cigarette smoke exposure and radiographic pulmonary vascular morphology in the Framingham Heart Study. Ann Am Thorac Soc. 2019;16(6):698–706. doi:10.1513/AnnalsATS.201811-795OC
  • Aaron CP, Hoffman EA, Lima JAC, et al. Pulmonary vascular volume, impaired left ventricular filling and dyspnea: the mesa lung study. PLoS One. 2017;12(4):e0176180. doi:10.1371/journal.pone.0176180
  • Seimetz M, Parajuli N, Pichl A, et al. Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice. Cell. 2011;147(2):293–305. doi:10.1016/j.cell.2011.08.035
  • Thorup C, Jones CL, Gross SS, et al. Carbon monoxide induces vasodilation and nitric oxide release but suppresses endothelial NOS. Am J Physiol. 1999;277(6):F882–F889. doi:10.1152/ajprenal.1999.277.6.F882
  • Jacob J, Bartholmai BJ, Rajagopalan S, et al. Mortality prediction in idiopathic pulmonary fibrosis: evaluation of computer-based CT analysis with conventional severity measures. Eur Respir J. 2017;49(1):1601011. doi:10.1183/13993003.01011-2016
  • Andersen KH, Andersen CB, Gustafsson F, et al. Pulmonary venous remodeling in COPD-pulmonary hypertension and idiopathic pulmonary arterial hypertension. Pulm Circ. 2017;7(2):514–521. doi:10.1177/2045893217709762
  • Nardelli P, Jimenez-Carretero D, Bermejo-Pelaez D, et al. Pulmonary artery-vein classification in ct images using deep learning. IEEE Trans Med Imaging. 2018;37(11):2428–2440. doi:10.1109/TMI.2018.2833385