161
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Sputum Biomarkers in Wood and Tobacco Smoke Etiotypes of Chronic Obstructive Pulmonary Disease

, ORCID Icon, , , , , , & ORCID Icon show all
Pages 1-10 | Received 07 Sep 2023, Accepted 19 Dec 2023, Published online: 29 Dec 2023

References

  • Soriano JB, Abajobir AA, Abate KH, et al. GBD 2015 Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med. 2017;5:691–706.
  • GOLD. Global Strategy for Prevention, Diagnosis and Management of COPD: 2023 Report; 2023. Available from: https://goldcopd.org/2023-gold-report-2/. Accessed February 25, 2023.
  • Stolz D, Mkorombindo T, Schumann DM, et al. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet. 2022;400:921–972. doi:10.1016/S0140-6736(22)01273-9
  • Celli B, Fabbri L, Criner G, et al. Definition and nomenclature of chronic obstructive pulmonary disease: time for its revision. Am J Respir Crit Care Med. 2022;206(11):1317–1325. doi:10.1164/rccm.202204-0671PP
  • Pathak U, Gupta NC, Suri JC. Risk of COPD due to indoor air pollution from biomass cooking fuel: a systematic review and meta-analysis. Int J Environ Health Res. 2020;30(1):75–88. doi:10.1080/09603123.2019.1575951
  • Sana A, Somda SMA, Meda N, Bouland C. Chronic obstructive pulmonary disease associated with biomass fuel use in women: a systematic review and meta-analysis. BMJ Open Respir Res. 2018;5:e000246. doi:10.1136/bmjresp-2017-000246
  • Salvi SS, Barnes PJ. Chronic obstructive pulmonary disease in non-smokers. Lancet. 2009;374(9691):733–743. doi:10.1016/S0140-6736(09)61303-9
  • Caballero A, Torres-Duque CA, Jaramillo C, et al. Prevalence of COPD in five Colombian cities situated at low, medium, and high altitude (PREPOCOL study). Chest. 2008;133:343–349. doi:10.1378/chest.07-1361
  • Perez-Padilla R, Ramirez-Venegas A, Sansores-Martinez R. Clinical Characteristics of Patients With Biomass Smoke-Associated COPD and Chronic Bronchitis, 2004-2014. Chronic Obstructive Pulmonary Dis. 2014;1:23–32. doi:10.15326/jcopdf.1.1.2013.0004
  • Torres-Duque CA, Garcia-Rodriguez MC, Gonzalez-Garcia M. Is Chronic Obstructive Pulmonary Disease Caused by Wood Smoke a Different Phenotype or a Different Entity? Arch Bronconeumol. 2016;52(8):425–431. doi:10.1016/j.arbr.2016.06.026
  • Assad NA, Balmes J, Mehta S, Cheema U, Sood A. Chronic obstructive pulmonary disease secondary to household air pollution. Semin Respir Crit Care Med. 2015;36(03):408–421. doi:10.1055/s-0035-1554846
  • González-García M, Maldonado-Gomez D, Torres-Duque CA, et al. Tomographic and functional findings in severe COPD: comparison between the wood smoke-related and smoking-related disease. J Bras Pneumol. 2013;39(2):147–154. doi:10.1590/S1806-37132013000200005
  • Olloquequi J, Jaime S, Parra V, et al. Comparative analysis of COPD associated with tobacco smoking, biomass smoke exposure or both. Respir Res. 2018;19(1):13. doi:10.1186/s12931-018-0718-y
  • Golpe R, Martín-Robles I, Sanjuán-López P, et al. Differences in systemic inflammation between cigarette and biomass smoke-induced COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:2639–2646. doi:10.2147/COPD.S141068
  • Camp PG, Ramirez-Venegas A, Sansores RH, et al. COPD phenotypes in biomass smoke- versus tobacco smoke-exposed Mexican women. Eur Respir J. 2014;43(3):725–734. doi:10.1183/09031936.00206112
  • Gonzalez-Garcia M, Torres-Duque CA, Bustos A, Jaramillo C, Maldonado D. Bronchial hyperresponsiveness in women with chronic obstructive pulmonary disease related to wood smoke. Int J Chron Obstruct Pulmon Dis. 2012;7:367–373. doi:10.2147/COPD.S30410
  • Ortiz-Quintero B, Martínez-Espinosa I, Pérez-Padilla R. Mechanisms of Lung Damage and Development of COPD Due to Household Biomass-Smoke Exposure: inflammation, Oxidative Stress, MicroRNAs, and Gene Polymorphisms. Cells. 2022;12(1):12. doi:10.3390/cells12010012
  • Silva R, Oyarzún M, Olloquequi J. Pathogenic mechanisms in chronic obstructive pulmonary disease due to biomass smoke exposure. Arch Bronconeumol. 2015;51:285–292. doi:10.1016/j.arbr.2015.04.013
  • Solleiro-Villavicencio H, Quintana-Carrillo R, Falfán-Valencia R, Vargas-Rojas MI. Chronic obstructive pulmonary disease induced by exposure to biomass smoke is associated with a Th2 cytokine production profile. Clin Immunol. 2015;161:150–155. doi:10.1016/j.clim.2015.07.009
  • Fernandes L, Rane S, Mandrekar S, Mesquita AM. Eosinophilic Airway Inflammation in Patients with Stable Biomass Smoke- versus Tobacco Smoke-Associated Chronic Obstructive Pulmonary Disease. J Health Pollut. 2019;9(24):191209. doi:10.5696/2156-9614-9.24.191209
  • Stockley RA, Halpin DMG, Celli BR, Singh D. Chronic Obstructive Pulmonary Disease Biomarkers and Their Interpretation. Am J Respir Crit Care Med. 2019;199:1195–1204. doi:10.1164/rccm.201810-1860SO
  • Pinto-Plata V, Toso J, Lee K, et al. Profiling serum biomarkers in patients with COPD: associations with clinical parameters. Thorax. 2007;62:595–601. doi:10.1136/thx.2006.064428
  • Laucho-Contreras ME, Polverino F, Gupta K, et al. Protective role for club cell secretory protein-16 (CC16) in the development of COPD. Eur Respir J. 2015;45(6):1544–1556. doi:10.1183/09031936.00134214
  • Rojas-Quintero J, Laucho-Contreras ME, Wang X, et al. CC16 augmentation reduces exaggerated COPD-like disease in Cc16-deficient mice. JCI Insight. 2023;8.
  • Vernooy JH, Lindeman JH, Jacobs JA, Hanemaaijer R, Wouters EF. Increased activity of matrix metalloproteinase-8 and matrix metalloproteinase-9 in induced sputum from patients with COPD. Chest. 2004;126:1802–1810. doi:10.1378/chest.126.6.1802
  • Di Stefano A, Caramori G, Gnemmi I, et al. Association of increased CCL5 and CXCL7 chemokine expression with neutrophil activation in severe stable COPD. Thorax. 2009;64(11):968–975. doi:10.1136/thx.2009.113647
  • Kanazawa H, Yoshikawa J. Elevated oxidative stress and reciprocal reduction of vascular endothelial growth factor levels with severity of COPD. Chest. 2005;128(5):3191–3197. doi:10.1378/chest.128.5.3191
  • Zhang X, Zheng H, Zhang H, et al. Increased interleukin (IL)-8 and decreased IL-17 production in chronic obstructive pulmonary disease (COPD) provoked by cigarette smoke. Cytokine. 2011;56(3):717–725. doi:10.1016/j.cyto.2011.09.010
  • Barregard L, Sallsten G, Andersson L, et al. Experimental exposure to wood smoke: effects on airway inflammation and oxidative stress. Occup Environ Med. 2008;65:319–324. doi:10.1136/oem.2006.032458
  • Vishweswaraiah S, Thimraj TA, George L, et al. Putative Systemic Biomarkers of Biomass Smoke-Induced Chronic Obstructive Pulmonary Disease among Women in a Rural South Indian Population. Dis Markers. 2018;2018:4949175. doi:10.1155/2018/4949175
  • Bonjour S, Adair-Rohani H, Wolf J, et al. Solid fuel use for household cooking: country and regional estimates for 1980-2010. Environ Health Perspect. 2013;121:784–790. doi:10.1289/ehp.1205987
  • World Health Organization. World Health Statistics 2015. Risk Factors; 2015. Available from: http://www.who.int/gho/publications/world_health_statistics/EN_WHS2015_Part2.pdf?ua=1. Accessed March 31, 2023.
  • Ferris BG. Epidemiology Standardization Project (American Thoracic Society). Am Rev Respir Dis. 1978;118:1–120.
  • Graham BL, Steenbruggen I, Miller MR, et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am J Respir Crit Care Med. 2019;200(8):e70–e88. doi:10.1164/rccm.201908-1590ST
  • Efthimiadis A, Spanevello A, Hamid Q, et al. Methods of sputum processing for cell counts, immunocytochemistry and in situ hybridisation. Eur Respir j. 2002;37:19s–23s. doi:10.1183/09031936.02.00001902
  • Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest. 2009;135(2):505–512. doi:10.1378/chest.08-0412
  • Balsam J, Ossandon M, Bruck HA, Lubensky I, Rasooly A. Low-cost technologies for medical diagnostics in low-resource settings. Expert Opin Med Diagn. 2013;7(3):243–255. doi:10.1517/17530059.2013.767796
  • Frankenberger M, Eder C, Hofer TP, et al. Chemokine expression by small sputum macrophages in COPD. Mol Med. 2011;17:762–770. doi:10.2119/molmed.2010.00202
  • Aviles B, Belda J, Margarit G, Bellido-Casado J, Martinez-Bru C, Casan P. Markers of airway remodeling in induced sputum from healthy smokers. Archi de bronconeumologia. 2006;42:235–240. doi:10.1016/S1579-2129(06)60452-7
  • Aaron SD, Vandemheen KL, Ramsay T, et al. Multi analyte profiling and variability of inflammatory markers in blood and induced sputum in patients with stable COPD. Respir Res. 2010;11(1):41. doi:10.1186/1465-9921-11-41
  • Meneghini AC, Koenigkam-Santos M, Pereira MC, et al. Biomass smoke COPD has less tomographic abnormalities but worse hypoxemia compared with tobacco COPD. Braz J Med Biol Res. 2019;52(5):e8233. doi:10.1590/1414-431x20198233
  • Hizawa N, Makita H, Nasuhara Y, et al. Functional single nucleotide polymorphisms of the CCL5 gene and nonemphysematous phenotype in COPD patients. Eur Respir J. 2008;32(2):372–378. doi:10.1183/09031936.00115307
  • Grumelli S, Corry DB, Song LZ, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med. 2004;1:e8. doi:10.1371/journal.pmed.0010008
  • Kratzer A, Salys J, Nold-Petry C, et al. Role of IL-18 in second-hand smoke-induced emphysema. Am J Respir Cell Mol Biol. 2013;48:725–732. doi:10.1165/rcmb.2012-0173OC
  • Costa C, Rufino R, Traves SL, Lapa ESJR, Barnes PJ, Donnelly LE. CXCR3 and CCR5 chemokines in induced sputum from patients with COPD. Chest. 2008;133(1):26–33. doi:10.1378/chest.07-0393
  • Falfán-Valencia R, Ramírez-Venegas A, Pérez Lara-Albisua JL, et al. Smoke exposure from chronic biomass burning induces distinct accumulative systemic inflammatory cytokine alterations compared to tobacco smoking in healthy women. Cytokine. 2020;131:155089. doi:10.1016/j.cyto.2020.155089
  • Ji J, von Schéele I, Bergström J, et al. Compartment differences of inflammatory activity in chronic obstructive pulmonary disease. Respir Res. 2014;15(1):104. doi:10.1186/s12931-014-0104-3
  • Yamamoto C, Yoneda T, Yoshikawa M, et al. Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest. 1997;112:505–510. doi:10.1378/chest.112.2.505
  • Beeh KM, Beier J, Kornmann O, Buhl R. Sputum matrix metalloproteinase-9, tissue inhibitor of metalloprotinease-1, and their molar ratio in patients with chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and healthy subjects. Respir Med. 2003;97(6):634–639. doi:10.1053/rmed.2003.1493
  • Kanazawa H, Asai K, Hirata K, Yoshikawa J. Possible effects of vascular endothelial growth factor in the pathogenesis of chronic obstructive pulmonary disease. Am J Med. 2003;114(5):354–358. doi:10.1016/S0002-9343(02)01562-0
  • Singh S, Verma SK, Kumar S, et al. Correlation of severity of chronic obstructive pulmonary disease with potential biomarkers. Immunol Lett. 2018;196:1–10. doi:10.1016/j.imlet.2018.01.004
  • Vanfleteren LEGW, Weidner J, Franssen FME, et al. Biomarker-based clustering of patients with chronic obstructive pulmonary disease. ERJ Open Res. 2023;9:00301–02022. doi:10.1183/23120541.00301-2022