78
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

GSTP1 rs4147581 C>G and NLRP3 rs3806265 T>C as Risk Factors for Chronic Obstructive Pulmonary Disease: A Case-Control Study

, , , , , , , , , , & show all
Pages 489-500 | Received 20 Oct 2023, Accepted 31 Jan 2024, Published online: 23 Feb 2024

References

  • Celli B, Fabbri L, Criner G, et al. Definition and nomenclature of chronic obstructive pulmonary disease: time for its revision. Am J Respir Crit Care Med. 2022;206(11):1317–1325. doi:10.1164/rccm.202204-0671PP
  • Soler N, Esperatti M, Ewig S, et al. Sputum purulence-guided antibiotic use in hospitalised patients with exacerbations of COPD. Europ resp J. 2012;40:1344–1353. doi:10.1183/09031936.00150211
  • Blakemore A, Dickens C, Chew-Graham CA, et al. Depression predicts emergency care use in people with chronic obstructive pulmonary disease: a large cohort study in primary care. Int J Chronic Obstr. 2019;14:1343–1353. doi:10.2147/COPD.S179109
  • Agustí A, Vogelmeier C, Faner R. COPD 2020: changes and challenges. Am J Physiol Lung Cell Mol Physiol. 2020;319:L879–L883. doi:10.1152/ajplung.00429.2020
  • Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet. 2018;391:1706–1717. doi:10.1016/S0140-6736(18)30841-9
  • Zhou M, Wang H, Zhu J, et al. Cause-specific mortality for 240 causes in China during 1990–2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet. 2016;387:251–272. doi:10.1016/S0140-6736(15)00551-6
  • Kessler R, Partridge MR, Miravitlles M, et al. Symptom variability in patients with severe COPD: a pan-European cross-sectional study. Europ resp J. 2011;37:264–272. doi:10.1183/09031936.00051110
  • Montes de Oca M, Perez-Padilla R, Tálamo C, et al. Acute bronchodilator responsiveness in subjects with and without airflow obstruction in five Latin American cities: the PLATINO study. Pulmon Pharmacol Ther. 2010;23:29–35. doi:10.1016/j.pupt.2009.09.005
  • Silverman EK. Genetics of COPD. Annu Rev Physiol. 2020;82:413–431. doi:10.1146/annurev-physiol-021317-121224
  • He Y, Jiang B, Li LS, et al. Secondhand smoke exposure predicted COPD and other tobacco-related mortality in a 17-year cohort study in China. Chest. 2012;142(4):909–918. doi:10.1378/chest.11-2884
  • Forey BA, Thornton AJ, Lee PN. Systematic review with meta-analysis of the epidemiological evidence relating smoking to COPD, chronic bronchitis and emphysema. BMC Pulm Med. 2011;11:36. doi:10.1186/1471-2466-11-36
  • Eisner MD, Balmes J, Katz PP, et al. Lifetime environmental tobacco smoke exposure and the risk of chronic obstructive pulmonary disease. Environ Health. 2005;4:7. doi:10.1186/1476-069X-4-7
  • Wang B, Xiao D, Wang C. Smoking and chronic obstructive pulmonary disease in Chinese population: a meta-analysis. Clin Respir J. 2015;9:165–175. doi:10.1111/crj.12118
  • Lai HC, Lin TL, Chen TW, et al. Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide. Gut. 2022;71:309–321. doi:10.1136/gutjnl-2020-322599
  • Confalonieri M, Braga L, Salton F, et al. Chronic obstructive pulmonary disease definition: is it time to incorporate the concept of failure of lung regeneration? Am J Respir Crit Care Med. 2023;207(3):366–367. doi:10.1164/rccm.202208-1508LE
  • Zhou H, Yang J, Li D, et al. Association of IREB2 and CHRNA3/5 polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population. J Human Gene. 2012;57:738–746. doi:10.1038/jhg.2012.104
  • Yuan C, Chang D, Lu G, et al. Genetic polymorphism and chronic obstructive pulmonary disease. Int J Chronic Obstr. 2017;12:1385–1393. doi:10.2147/COPD.S134161
  • Stankovic M, Nikolic A, Nagorni-Obradovic L, et al. Gene-gene interactions between glutathione S-transferase M1 and matrix metalloproteinases 1, 9, and 12 in chronic obstructive pulmonary disease in serbians. COPD. 2017;14:581–589. doi:10.1080/15412555.2017.1369022
  • Zuntar I, Petlevski R, Dodig S, et al. GSTP1, GSTM1 and GSTT1 genetic polymorphisms and total serum GST concentration in stable male COPD. Acta Pharm. 2014;64:117–129. doi:10.2478/acph-2014-0003
  • Zhong L, Zhang YP, Fu WP, et al. The relationship between GSTP1 I105V polymorphism and COPD: a reappraisal. Am J Respir Crit Care Med. 2010;181:763–765. doi:10.1164/ajrccm.181.7.763
  • Yan F, Chen C, Jing J, et al. Association between polymorphism of glutathione S-transferase P1 and chronic obstructive pulmonary disease: a meta-analysis. Respir Med. 2010;104:473–480. doi:10.1016/j.rmed.2010.01.009
  • Ishii T, Matsuse T, Teramoto S, et al. Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax. 1999;54:693–696. doi:10.1136/thx.54.8.693
  • Yim JJ, Park GY, Lee CT, et al. Genetic susceptibility to chronic obstructive pulmonary disease in Koreans: combined analysis of polymorphic genotypes for microsomal epoxide hydrolase and glutathione S-transferase M1 and T1. Thorax. 2000;55:121–125. doi:10.1136/thorax.55.2.121
  • Yang L, Li X, Tong X, et al. Association between glutathione S-transferase P1 Ile (105) Val gene polymorphism and chronic obstructive pulmonary disease: a meta-analysis based on seventeen case-control studies. Meta Gene. 2015;6:59–64. doi:10.1016/j.mgene.2015.08.007
  • Yang Q, Huang W, Yin D, et al. EPHX1 and GSTP1 polymorphisms are associated with COPD risk: a systematic review and meta-analysis. Front Genetics. 2023;14:1128985. doi:10.3389/fgene.2023.1128985
  • Du Y, Zhang H, Xu Y, et al. Association among genetic polymorphisms of GSTP1, HO-1, and SOD-3 and chronic obstructive pulmonary disease susceptibility. Int J Chronic Obstr. 2019;14:2081–2088. doi:10.2147/COPD.S213364
  • Mo R, Li J, Chen Y, et al. lncRNA GAS5 promotes pyroptosis in COPD by functioning as a ceRNA to regulate the miR-223-3p/NLRP3 axis. Molecul Med Rep. 2022;26:219. doi:10.3892/mmr.2022.12735
  • Faner R, Sobradillo P, Noguera A, et al. The inflammasome pathway in stable COPD and acute exacerbations. ERJ Open Res. 2016;2:2. doi:10.1183/23120541.00002-2016
  • Eltom S, Stevenson CS, Rastrick J, et al. P2X7 receptor and caspase 1 activation are central to airway inflammation observed after exposure to tobacco smoke. PLoS One. 2011;6:e24097. doi:10.1371/journal.pone.0024097
  • Mahalanobish S, Dutta S, Saha S, et al. Melatonin induced suppression of ER stress and mitochondrial dysfunction inhibited NLRP3 inflammasome activation in COPD mice. Food and Chemical Toxicology. 2020;144:111588.
  • Zhang MY, Jiang YX, Yang YC, et al. Cigarette smoke extract induces pyroptosis in human bronchial epithelial cells through the ROS/NLRP3/caspase-1 pathway. Life Sci. 2021;269:119090. doi:10.1016/j.lfs.2021.119090
  • Cheng L, Yin R, Yang S, et al. Rs4612666 Polymorphism of the NLRP3 gene is associated with the occurrence of large artery atherosclerotic ischemic strokes and microembolic signals. Biomed Res. Int. 2018;2018:6345805. doi:10.1155/2018/6345805
  • Zhou D, Wang X, Chen T, et al. The NLRP3 rs10754558 polymorphism is associated with the occurrence and prognosis of coronary artery disease in the Chinese han population. Biomed Res. Int. 2016;2016:3185397. doi:10.1155/2016/3185397
  • Sui J, Li H, Fang Y, et al. NLRP1 gene polymorphism influences gene transcription and is a risk factor for rheumatoid arthritis in han Chinese. Arthritis Rheum. 2012;64:647–654. doi:10.1002/art.33370
  • Von Herrmann KM, Salas LA, Martinez EM, et al. NLRP3 expression in mesencephalic neurons and characterization of a rare NLRP3 polymorphism associated with decreased risk of Parkinson’s disease. NPJ Parkinson’s Dis. 2018;4:24. doi:10.1038/s41531-018-0061-5
  • Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (2023 report). Avaliable from: https://goldcopd.org/2023-gold-report-2/. Accessed February 7, 2024.
  • Gattás GJ, Kato M, Soares-Vieira JA, et al. Ethnicity and glutathione S-transferase (GSTM1/GSTT1) polymorphisms in a Brazilian population. Braz J Med Biol Res. 2004;37:451–458. doi:10.1590/s0100-879x2004000400002
  • Tomaki M, Sugiura H, Koarai A, et al. Decreased expression of antioxidant enzymes and increased expression of chemokines in COPD lung. Pulmon Pharmacol Ther. 2007;20:596–605. doi:10.1016/j.pupt.2006.06.006
  • Ishii T, Matsuse T, Igarashi H, et al. Tobacco smoke reduces viability in human lung fibroblasts: protective effect of glutathione S-transferase P1. Am J Physiol Lung Cell Mol Physiol. 2001;280:L1189–L1195. doi:10.1152/ajplung.2001.280.6.L1189
  • Guo P, Li R, Piao TH, et al. Pathological mechanism and targeted drugs of COPD. Int J Chronic Obstr. 2022;17:1565–1575. doi:10.2147/COPD.S366126
  • Chen X, Liu G, Yuan Y, et al. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis. 2019;10:906. doi:10.1038/s41419-019-2157-1
  • Wang Z, Qu K, Niu W, et al. Glutathione S-transferase P1 gene rs4147581 polymorphism predicts overall survival of patients with hepatocellular carcinoma: evidence from an enlarged study. Tumour Biol. 2016;37:943–952. doi:10.1007/s13277-015-3871-7
  • Phuthong S, Settheetham-Ishida W, Natphopsuk S, et al. Genetic Polymorphism of the Glutathione S-transferase Pi 1 (GSTP1) and susceptibility to cervical cancer in human papilloma virus infected Northeastern Thai Women. Asian Pac J Cancer Prev. 2018;19:381–385. doi:10.22034/APJCP.2018.19.2.381
  • Mukhammadiyeva GF, Bakirov AB, Karimov DO, et al. Analysis of the GSTP1 rs1695 polymorphism association with the development of asthma and phenotypic manifestations. J Asthma. 2022;59:1065–1069. doi:10.1080/02770903.2021.1910295
  • Dasgupta RK, Adamson PJ, Davies FE, et al. Polymorphic variation in GSTP1 modulates outcome following therapy for multiple myeloma. Blood. 2003;102:2345–2350. doi:10.1182/blood-2003-02-0444
  • Zhong S, Huang M, Yang X, et al. Relationship of glutathione S-transferase genotypes with side-effects of pulsed cyclophosphamide therapy in patients with systemic lupus erythematosus. Br. J. Clin. Pharmacol. 2006;62:457–472. doi:10.1111/j.1365-2125.2006.02690.x
  • Imani D, Azimi A, Salehi Z, et al. Association of nod-like receptor protein-3 single nucleotide gene polymorphisms and expression with the susceptibility to relapsing-remitting multiple sclerosis. Int J Immunogene. 2018;45:329–336. doi:10.1111/iji.12401
  • Agah E, Nafissi S, Saleh F, et al. Investigating the possible association between NLRP3 gene polymorphisms and myasthenia gravis. Muscle and Nerve. 2021;63:730–736. doi:10.1002/mus.27193
  • Cheng L, Liang X, Qian L, et al. NLRP3 gene polymorphisms and expression in rheumatoid arthritis. Exp Ther Med. 2021;22:1110.
  • La Russa A, Lofaro D, Montesanto A, et al. Association between NLRP3 rs10754558 and CARD8 rs2043211 variants and susceptibility to chronic kidney disease. Int J Mol Sci. 2023;24:1110. doi:10.3892/etm.2021.10544
  • Dawood A, Shehata W. Evaluation of NLRP3 (rs10754558) and PTPN22 (1858C/T) (rs2476601) functional polymorphisms in psoriasis susceptibility in Egypt. Appl Clin Gene. 2021;14:331–339. doi:10.2147/TACG.S319065
  • Qu K, Liu SS, Wang ZX, et al. Polymorphisms of glutathione S-transferase genes and survival of resected hepatocellular carcinoma patients. World J Gastroenterol. 2015;21:4310–4322. doi:10.3748/wjg.v21.i14.4310
  • Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20:3328. doi:10.3390/ijms20133328
  • Yadav H, Pandit D, Singh S, et al. GST polymorphism as a predictive biomarker for modulating the susceptibility to chronic obstructive pulmonary disease: a North Indian study. Exp Physiol. 2023. doi:10.1113/EP091339
  • Li S, Lin L, Zhao J, et al. The Study of the Influence of IL5RA variants on chronic obstructive pulmonary disease. COPD. 2023;20(1):338–347. doi:10.1080/15412555.2023.2270729
  • Castro MCS, Nani ASF, Salum KCR, et al. Genetic polymorphisms and their effects on the severity of silicosis in workers exposed to silica in Brazil. J Bras Pneumol. 2022;48(5):e20220167. doi:10.36416/1806-3756/e20220167
  • Cheng Z, Zhang Y, Zhao R, et al. A novel circRNA-SNP may increase susceptibility to silicosis. Ecotoxicol Environ Saf. 2022;242:113855. doi:10.1016/j.ecoenv.2022.113855