94
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Unveiling the Knowledge Frontier: A Scientometric Analysis of COPD with Sarcopenia

&
Pages 731-748 | Received 10 Nov 2023, Accepted 01 Mar 2024, Published online: 12 Mar 2024

References

  • Soriano JB, Kendrick PJ, Paulson KR, et al. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet Respir Med. 2020;8(6):585–596. doi:10.1016/s2213-2600(20)30105-3
  • Christenson SA, Smith BM, Bafadhel M, et al. Chronic obstructive pulmonary disease. Lancet. 2022;399(10342):2227–2242. doi:10.1016/s0140-6736(22)00470-6
  • Majid H, Kanbar-Agha F, Sharafkhaneh A. COPD: osteoporosis and sarcopenia. COPD Res Pract. 2016;2(1):3. doi:10.1186/s40749-016-0019-0
  • Mollica M, Aronne L, Paoli G, et al. Elderly with COPD: comoborbitidies and systemic consequences. J Gerontol Geriatr. 2021;69(1):32–44. doi:10.36150/2499-6564-434
  • Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393(10191):2636–2646. doi:10.1016/s0140-6736(19)31138-9
  • Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi:10.1093/ageing/afy169
  • Chen LK, Woo J, Assantachai P, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21(3):300–07.e2. doi:10.1016/j.jamda.2019.12.012
  • Petermann-Rocha F, Balntzi V, Gray SR, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13(1):86–99. doi:10.1002/jcsm.12783
  • Nicholson JM, Orsso CE, Nourouzpour S, et al. Computed tomography-based body composition measures in COPD and their association with clinical outcomes: a systematic review. Chron Respir Dis. 2022;19:14799731221133387. doi:10.1177/14799731221133387
  • Pishgar F, Shabani M, Silva TQAC, et al. Quantitative analysis of adipose depots by using chest CT and associations with all-cause mortality in chronic obstructive pulmonary disease: longitudinal analysis from MESArthritis ancillary study. Radiology. 2021;299(3):703–711. doi:10.1148/radiol.2021203959
  • Jaitovich A, Barreiro E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. what we know and can do for our patients. Am J Respir Crit Care Med. 2018;198(2):175–186. doi:10.1164/rccm.201710-2140CI
  • Bui K-L, Nyberg A, Rabinovich R, Saey D, Maltais F. The relevance of limb muscle dysfunction in chronic obstructive pulmonary disease: a review for clinicians. Clin Chest Med. 2019;40(2):367–383. doi:10.1016/j.ccm.2019.02.013
  • Taivassalo T, Hepple RT. Integrating mechanisms of exacerbated atrophy and other adverse skeletal muscle impact in COPD. Front Physiol. 2022;13:861617. doi:10.3389/fphys.2022.861617
  • Benz E, Trajanoska K, Lahousse L, et al. Sarcopenia in COPD: a systematic review and meta-analysis. Eur Respir Rev. 2019;28(154):190049. doi:10.1183/16000617.0049-2019
  • He J, Li H, Yao J, Wang Y. Prevalence of sarcopenia in patients with COPD through different musculature measurements: an updated meta-analysis and meta-regression. Front Nutr. 2023;10:1137371. doi:10.3389/fnut.2023.1137371
  • Wu D, Chen Q. Diagnosis and treatment of chronic obstructive pulmonary disease-related sarcopenia. Parenteral Enteral Nutr. 2021;28(5):308–312.
  • Wang P, Zhang S, Zhang X, Liu Y, Sun J. Exploring the pathogenesis of chronic obstructive pulmonary disease complicated with sarcopenia based on the theory of Pi Governing Muscles. Chin J Integrated Tradit Western Med. 2023;43(1):107–112.
  • Gu W, Li X, Zhong X, Zhou D. Research progress on relationship between skeletal muscle atrophy and apoptosis in COPD based on theory of spleen dominating muscles and intervention effect of traditional Chinese medicine. Shanghai J Tradit Chin Med. 2023;57(1):100–104.
  • Chaomei C. Science mapping: a systematic review of the literature. J Data Inf Sci. 2017;2(2):1–40.
  • Nees Jan van Eck LW, Waltman L. Software survey: vOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523–538. doi:10.1007/s11192-009-0146-3
  • Yang Y, Chen Y, Liu Y, et al. Mesenchymal stem cells and pulmonary fibrosis: a bibliometric and visualization analysis of literature published between 2002 and 2021. Front Pharmacol. 2023;14(113676). doi:10.3389/fphar.2023.1136761
  • Xu D, Wang Y-L, Wang K-T, et al. A scientometrics analysis and visualization of depressive disorder. Curr Neuropharmacol. 2021;19(6):766–786. doi:10.2174/1570159x18666200905151333
  • van Bakel SIJ, Gosker HR, Langen RC, Amwj S. Towards personalized management of sarcopenia in COPD. Int J Chron Obstruct Pulmon Dis. 2021;16:25–40. doi:10.2147/copd.S280540
  • Karim A, Muhammad T, Iqbal MS, Qaisar R. A multistrain probiotic improves handgrip strength and functional capacity in patients with COPD: a randomized controlled trial. Arch Gerontol Geriatr. 2022;102:104721. doi:10.1016/j.archger.2022.104721
  • Nan Y, Zhou Y, Dai Z, et al. Role of nutrition in patients with coexisting chronic obstructive pulmonary disease and sarcopenia. Front Nutri. 2023;10:1214684. doi:10.3389/fnut.2023.1214684
  • Brunton NM, Barbour DJ, Gelinas JC, et al. Lower-limb resistance training reduces exertional dyspnea and intrinsic neuromuscular fatigability in individuals with chronic obstructive pulmonary disease. J Appl Physiol. 2023;134(5):1105–1114. doi:10.1152/japplphysiol.00303.2022
  • Ravelo D, Yair D, Wiese P, et al. Blood flow restriction training improves pulmonary function in a patient with COPD and sarcopenia [abstract]. Cardiopul Phy Therap J. 2023;34(1):a13. doi:10.1097/CPT.0000000000000220
  • Marquis K, Debigaré R, Lacasse Y, et al. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;166(6):809–813. doi:10.1164/rccm.2107031
  • Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010;39(4):412–423. doi:10.1093/ageing/afq034
  • Schols AM, Broekhuizen R, Weling-Scheepers CA, Wouters EF. Body composition and mortality in chronic obstructive pulmonary disease. Am J Clin Nutr. 2005;82(1):53–59. doi:10.1093/ajcn.82.1.53
  • Swallow EB, Reyes D, Hopkinson NS, et al. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax. 2007;62(2):115–120. doi:10.1136/thx.2006.062026
  • Jones SE, Maddocks M, Kon SS, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015;70(3):213–218. doi:10.1136/thoraxjnl-2014-206440
  • Bernard S, LeBlanc P, Whittom F, et al. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;158(2):629–634. doi:10.1164/ajrccm.158.2.9711023
  • Celli BR, Cote CG, Marin JM, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. New Engl J Med. 2004;350(10):1005–1012. doi:10.1056/NEJMoa021322
  • Schols AM, Slangen J, Volovics L, Wouters EF. Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157(6 Pt 1):1791–1797. doi:10.1164/ajrccm.157.6.9705017
  • Crapo RO, Casaburi R, Coates AL, et al. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–117. doi:10.1164/rccm.166/1/111
  • Maltais F, Decramer M, Casaburi R, et al. An official American thoracic society/European respiratory society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189(9):e15–62. doi:10.1164/rccm.201402-0373ST
  • Landbo C, Prescott E, Lange P, Vestbo J, Almdal TP. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160(6):1856–1861. doi:10.1164/ajrccm.160.6.9902115
  • Rabe KF, Hurd S, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176(6):532–555. doi:10.1164/rccm.200703-456SO
  • Vestbo J, Prescott E, Almdal T, et al. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample - findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med. 2006;173(1):79–83. doi:10.1164/rccm.200505-969OC
  • Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med. 1996;153(3):976–980. doi:10.1164/ajrccm.153.3.8630582
  • Doucet M, Russell AP, Leger B, et al. Muscle atrophy and hypertrophy signaling in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176(3):261–269. doi:10.1164/rccm.200605-704OC
  • Steiner MC, Barton RL, Singh SJ, Morgan MDL. Bedside methods versus dual energy X-ray absorptiometry for body composition measurement in COPD. Eur Respir J. 2002;19(4):626–631. doi:10.1183/09031936.02.00279602
  • Miller MR. General considerations for lung function testing. Eur Respir J. 2005;26(1):153–161. doi:10.1183/09031936.05.00034505
  • Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009;33(5):1165–1185. doi:10.1183/09031936.00128008
  • Shrikrishna D, Patel M, Tanner RJ, et al. Quadriceps wasting and physical inactivity in patients with COPD. Eur Respir J. 2012;40(5):1115–1122. doi:10.1183/09031936.00170111
  • Seymour JM, Spruit MA, Hopkinson NS, et al. The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur Respir J. 2010;36(1):81–88. doi:10.1183/09031936.00104909
  • Whittom F, Jobin J, Simard PM, et al. Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc. 1998;30(10):1467–1474. doi:10.1097/00005768-199810000-00001
  • Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704–1708. doi:10.1126/science.1065874
  • Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399–412. doi:10.1016/s0092-8674(04)00400-3
  • Plant PJ, Brooks D, Faughnan M, et al. Cellular markers of muscle atrophy in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2010;42(4):461–471. doi:10.1165/rcmb.2008-0382OC
  • Gosker HR, Zeegers MP, Wouters EFM, Amwj S. Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta-analysis. Thorax. 2007;62(11):944–949. doi:10.1136/thx.2007.078980
  • Mostert R, Goris A, Weling-Scheepers C, Wouters EFM, Schols A. Tissue depletion and health related quality of life in patients with chronic obstructive pulmonary disease. Respir Med. 2000;94(9):859–867. doi:10.1053/rmed.2000.0829
  • Evans WJ, Morley JE, Argiles J, et al. Cachexia: a new definition. Clin Nutr. 2008;27(6):793–799. doi:10.1016/j.clnu.2008.06.013
  • Schols AM, Soeters PB, Dingemans AM, Mostert R, Frantzen PJ, Wouters EF. Prevalence and characteristics of nutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation. Am Rev Respir Dis. 1993;147(5):1151–1156. doi:10.1164/ajrccm/147.5.1151
  • Byun MK, Cho EN, Chang J, Ahn CM, Kim HJ. Sarcopenia correlates with systemic inflammation in COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:669–675. doi:10.2147/copd.S130790
  • Fermoselle C, Rabinovich R, Ausin P, et al. Does oxidative stress modulate limb muscle atrophy in severe COPD patients? Eur Respir J. 2012;40(4):851–862. doi:10.1183/09031936.00137211
  • Vestbo J, Hurd SS, Agusti AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–365. doi:10.1164/rccm.201204-0596PP
  • Mador MJ, Bozkanat E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir Res. 2001;2(4):216–224. doi:10.1186/rr60
  • Jagoe RT, Engelen M. Muscle wasting and changes in muscle protein metabolism in chronic obstructive pulmonary disease. Eur Respir J. 2003;22:52S–63S. doi:10.1183/09031936.03.00004608
  • O’Brien ME, Hyre N, Leader JK, Chandra D, Sciurba FC, Bon J. Chest ct pectoralis muscle size validated with dual energy X-ray absorptiometry measurements of body composition is associated with lung function in COPD [abstract]. Am J Respir Crit Care Med. 2018;197:1.
  • Cao J, Zuo D, Han T, et al. Correlation between bioelectrical impedance analysis and chest CT-measured erector spinae muscle area: a cross-sectional study. Front Endocrinol. 2022;13:923200. doi:10.3389/fendo.2022.923200
  • Attaway A, Welch N, Yadav R, et al. Quantitative CT assessment of pectoralis and erector spinae muscle area and disease severity in COPD [abstract]. Am J Respir Crit Care Med. 2021;203(9). doi:10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A2289
  • O’Brien ME, Zou RH, Hyre N, et al. CT pectoralis muscle area is associated with DXA lean mass and correlates with emphysema progression in a tobacco-exposed cohort. Thorax. 2023;78(4):394–401. doi:10.1136/thoraxjnl-2021-217710
  • Maetani T, Tanabe N, Shiraishi Y, et al. Centrilobular emphysema is associated with pectoralis muscle reduction in current smokers without airflow limitation. Respiration. 2023;102(3):194–202. doi:10.1159/000529031
  • Brath MS, Sahakyan M, Veiss-Pedersen P, et al. Contrast enhanced computed tomography based cumulated thoracic muscular cross- sectional area and the correlation to single muscle groups of the thorax; pectoralis, latissimus dorsi, and spinae erector muscles in patients without chronic diseases, a pilot study [abstract]. Am J Respir Crit Care Med. 2022;205(1). doi:10.1164/ajrccm-conference.2022.205.1_MeetingAbstracts.A3791
  • Garcha PS, Nisar T, Jamil AK, et al. Single-center study evaluating the impact of sarcopenia on outcomes after lung transplantation. J Heart Lung Transplant. 2019;38(Suppl 4):S333–S34. doi:10.1016/j.healun.2019.01.842
  • Frille A, Linder N, Busse H, et al. Brown adipose tissue activation quantified by positron emission tomography/computed tomography describes pulmonary cachexia in COPD patients. NuklearMedizin. 2019;58(2):187. doi:10.1055/s-0039-1683719
  • Vellas B, Fielding R, Bhasin S, et al. Sarcopenia trials in specific diseases: report by the international conference on frailty and sarcopenia research task force. J Frailty Aging. 2016;5(4):194–200. doi:10.14283/jfa.2016.110
  • Limpawattana P, Putraveephong S, Inthasuwan P, Boonsawat W, Theerakulpisut D, Chindaprasirt J. Frailty syndrome in ambulatory patients with COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:1193–1198. doi:10.2147/COPD.S134233
  • Celis Preciado CA, Borda M, Castelblanco S, et al. Sarcopenia and frailty, two new domains in chronic obstructive pulmonary disease prognosis: a systematic review. Am J Respir Crit Care Med. 2017;195:1.
  • Mason SE, Moreta-Martinez R, Labaki WW, et al. Longitudinal association between muscle loss and mortality in ever smokers. Chest. 2022;161(4):960–970. doi:10.1016/j.chest.2021.10.047
  • Byrne T, Cooke J, Bambrick P, McNeela E, Harrison M. Circulating inflammatory biomarker responses in intervention trials in frail and sarcopenic older adults: a systematic review and meta-analysis. Exp Gerontol. 2023;177:112199. doi:10.1016/j.exger.2023.112199
  • Chen YW, Ramsook AH, Coxson HO, Bon J, Reid WD. Prevalence and risk factors for osteoporosis in individuals with COPD: a systematic review and meta-analysis. Chest. 2019;156(6):1092–1110. doi:10.1016/j.chest.2019.06.036
  • Zhang L, Sun Y. Muscle-bone crosstalk in chronic obstructive pulmonary disease. Front Endocrinol. 2021;12:724911. doi:10.3389/fendo.2021.724911
  • Sun Y, Zhang L, Cai H, Chen Y. Editorial: osteoporosis, sarcopenia and muscle-bone crosstalk in COPD. Front Physiol. 2022;13:1040693. doi:10.3389/fphys.2022.1040693
  • Suleymanova AK, Baranova IA. Osteosarcopenia and severe osteosarcopenia in COPD patients. Osteoporos Int. 2020;31(suppl 1):S277–S78. doi:10.1007/s00198-020-05696-3
  • Lee D, Kim J. Similarities and differences in the effects of sarcopenia on bone mineral density reduction between mild chronic chronic obstructive pulmonary disease (COPD), moderate to severe COPD and normal lung function in the elderly. Am J Respir Crit Care Med. 2020;201(1):1.
  • Wilson AC, Bon JM, Mason S, et al. Increased chest CT derived bone and muscle measures capture markers of improved morbidity and mortality in COPD. Respir Res. 2022;23(1):311. doi:10.1186/s12931-022-02237-w
  • Wilson AC, Bon J, Mason S, et al. Increased bone and muscle measures derived from chest CT are markers of improved quality of life, function, and survival in COPD [abstract]. Am J Respir Crit Care Med. 2021;203(9):1.
  • Kelly OJ, Gilman JC, Boschiero D, Ilich JZ. Osteosarcopenic obesity: current knowledge, revised identification criteria and treatment principles. Nutrients. 2019;11(4):747. doi:10.3390/nu11040747
  • Liu Y, Song Y, Hao Q, Wu J. Global prevalence of osteosarcopenic obesity amongst middle aged and older adults: a systematic review and meta-analysis. Arch Osteoporos. 2023;18(1):60. doi:10.1007/s11657-023-01247-5
  • Lippi L, Folli A, Curci C, et al. Osteosarcopenia in patients with chronic obstructive pulmonary diseases: which pathophysiologic implications for rehabilitation? Int J Env Res Public Health. 2022;19(21):14314. doi:10.3390/ijerph192114314
  • Kim SH, Shin MJ, Shin YB, Kim KU. Sarcopenia associated with chronic obstructive pulmonary disease. J Bone Metab. 2019;26(2):65–74. doi:10.11005/jbm.2019.26.2.65
  • Lakhdar R, Rabinovich RA. Can muscle protein metabolism be specifically targeted by nutritional support and exercise training in chronic obstructive pulmonary disease? J Thorac Dis. 2018;10:S1377–S89. doi:10.21037/jtd.2018.05.81
  • Jang YJ. The effects of protein and supplements on sarcopenia in human clinical studies: how older adults should consume protein and supplements. J Microbiol Biotechnol. 2023;33(2):143–150. doi:10.4014/jmb.2210.10014
  • Piscaer I, Janssen R, Franssen FME, Schurgers LJ, Wouters EFM. The pleiotropic role of vitamin K in multimorbidity of chronic obstructive pulmonary disease. J Clin Med. 2023;12(4)::1261. doi:10.3390/jcm12041261
  • Cornelison SD, Pascual RM. Pulmonary rehabilitation in the management of chronic lung disease. Med Clin North Am. 2019;103(3):577–584. doi:10.1016/j.mcna.2018.12.015
  • Shen Y, Shi Q, Nong K, et al. Exercise for sarcopenia in older people: a systematic review and network meta-analysis. J Cachexia Sarcopenia Muscle. 2023;14(3):1199–1211. doi:10.1002/jcsm.13225