55
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Effects of Natural Products through Inhibiting Endoplasmic Reticulum Stress on Attenuation of Idiopathic Pulmonary Fibrosis

ORCID Icon, , , , &
Pages 1627-1650 | Received 22 Aug 2023, Accepted 23 Apr 2024, Published online: 16 May 2024

References

  • Lee TH, Yeh CF, Lee YT, et al. Fibroblast-enriched endoplasmic reticulum protein TXNDC5 promotes pulmonary fibrosis by augmenting TGFbeta signaling through TGFBR1 stabilization. Nat Commun. 2020;11(1):4254. doi:10.1038/s41467-020-18047-x
  • Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov. 2017;16(11):810. doi:10.1038/nrd.2017.225
  • Raghu G, Collard HR, Egan JJ, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824. doi:10.1164/rccm.2009-040GL
  • Martinez FJ, Collard HR, Pardo A, et al. Idiopathic pulmonary fibrosis. Nat Rev Dis Primers. 2017;3:17074. doi:10.1038/nrdp.2017.74
  • Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G. Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2006;174(7):810–816. doi:10.1164/rccm.200602-163OC
  • Schwartz DA, Helmers RA, Galvin JR, et al. Determinants of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1994;149(2 Pt 1):450–454. doi:10.1164/ajrccm.149.2.8306044
  • Gay SE, Kazerooni EA, Toews GB, et al. Idiopathic pulmonary fibrosis: predicting response to therapy and survival. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1063–1072. doi:10.1164/ajrccm.157.4.9703022
  • Bjoraker JA, Ryu JH, Edwin MK, et al. Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1998;157(1):199–203. doi:10.1164/ajrccm.157.1.9704130
  • King TE, Tooze JA, Schwarz MI, Brown KR, Cherniack RM. Predicting survival in idiopathic pulmonary fibrosis: scoring system and survival model. Am J Respir Crit Care Med. 2001;164(7):1171–1181. doi:10.1164/ajrccm.164.7.2003140
  • Park Y, Ahn C, Kim TH. Occupational and environmental risk factors of idiopathic pulmonary fibrosis: a systematic review and meta-analyses. Sci Rep. 2021;11(1):4318. doi:10.1038/s41598-021-81591-z
  • Michalski JE, Schwartz DA. Genetic Risk Factors for Idiopathic Pulmonary Fibrosis: insights into Immunopathogenesis. J Inflamm Res. 2020;13:1305–1318. doi:10.2147/JIR.S280958
  • Pardo A, Selman M. The Interplay of the Genetic Architecture, Aging, and Environmental Factors in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol. 2021;64(2):163–172. doi:10.1165/rcmb.2020-0373PS
  • Garcia-Sancho C, Buendia-Roldan I, Fernandez-Plata MR, et al. Familial pulmonary fibrosis is the strongest risk factor for idiopathic pulmonary fibrosis. Respir Med. 2011;105(12):1902–1907. doi:10.1016/j.rmed.2011.08.022
  • Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–1952. doi:10.1016/S0140-6736(17)30866-8
  • Strieter RM, Mehrad B. New mechanisms of pulmonary fibrosis. Chest. 2009;136(5):1364–1370. doi:10.1378/chest.09-0510
  • Ramli I, Cheriet T, Posadino AM, et al. Potential Therapeutic Targets of Resveratrol in the Prevention and Treatment of Pulmonary Fibrosis. Front Biosci (Landmark Ed). 2023;28(9):198. doi:10.31083/j.fbl2809198
  • Mai TH, Han LW, Hsu JC, Kamath N, Pan L. Idiopathic pulmonary fibrosis therapy development: a clinical pharmacology perspective. Ther Adv Respir Dis. 2023;17:17534666231181537. doi:10.1177/17534666231181537
  • Jia Q, Lei Y, Chen S, Liu S, Wang T, Cheng Y. Circulating inflammatory cytokines and risk of idiopathic pulmonary fibrosis: a Mendelian randomization study. BMC Pulm Med. 2023;23(1):369. doi:10.1186/s12890-023-02658-3
  • Salton F, Ruaro B, Confalonieri P, Confalonieri M. Epithelial-Mesenchymal Transition: a Major Pathogenic Driver in Idiopathic Pulmonary Fibrosis? Medicina (Kaunas). 2020;56(11):608. doi:10.3390/medicina56110608
  • King TE, Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet. 2011;378(9807):1949–1961. doi:10.1016/S0140-6736(11)60052-4
  • Princiotta MF, Finzi D, Qian SB, et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity. 2003;18(3):343–354. doi:10.1016/s1074-7613(03)00051-7
  • Frakes AE, Dillin A. The UPR(ER): sensor and Coordinator of Organismal Homeostasis. Mol Cell. 2017;66(6):761–771. doi:10.1016/j.molcel.2017.05.031
  • Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol. 2017;13(8):477–491. doi:10.1038/nrneurol.2017.99
  • Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004;11(4):381–389. doi:10.1038/sj.cdd.4401373
  • Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8(11):851–864. doi:10.1038/nrc2501
  • Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005;115(10):2656–2664. doi:10.1172/JCI26373
  • Kowalczyk M, Majsterek I, Galecki P, Talarowska M. The role of the endoplasmic reticulum stress in depression. Psychiatr Pol. 2020;54(3):499–508. doi:10.12740/PP/109130
  • Hotamisligil GS. Endoplasmic reticulum stress and atherosclerosis. Nat Med. 2010;16(4):396–399. doi:10.1038/nm0410-396
  • Tabas I. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res. 2010;107(7):839–850. doi:10.1161/CIRCRESAHA.110.224766
  • Saxena S, Cabuy E, Caroni P. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci. 2009;12(5):627–636. doi:10.1038/nn.2297
  • Schonthal AH. Targeting endoplasmic reticulum stress for cancer therapy. Front Biosci (Schol Ed). 2012;4:412–431. doi:10.2741/276
  • Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev. 2008;29(1):42–61. doi:10.1210/er.2007-0015
  • Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140(6):900–917. doi:10.1016/j.cell.2010.02.034
  • Fonseca SG, Lipson KL, Urano F. Endoplasmic reticulum stress signaling in pancreatic beta-cells. Antioxid Redox Signal. 2007;9(12):2335–2344. doi:10.1089/ars.2007.1790
  • Maris M, Overbergh L, Gysemans C, et al. Deletion of C/EBP homologous protein (Chop) in C57Bl/6 mice dissociates obesity from insulin resistance. Diabetologia. 2012;55(4):1167–1178. doi:10.1007/s00125-011-2427-7
  • Ma J, Wang JQ, Ma CJ, et al. Wnt5a/Ca(2+) signaling regulates silica-induced ferroptosis in mouse macrophages by altering ER stress-mediated redox balance. Toxicology. 2023;490:153514. doi:10.1016/j.tox.2023.153514
  • Mo LH, Liu Y, Xu XJ, et al. Endoplasmic reticulum stress impairs the immune regulation property of macrophages in asthmatic patients. Clin Immunol. 2023:109639. doi:10.1016/j.clim.2023.109639
  • Sui HH, Xiao SS, Jiang SP, et al. Regorafenib induces NOX5-mediated endoplasmic reticulum stress and potentiates the anti-tumor activity of cisplatin in non-small cell lung cancer cells. Neoplasia. 2023;39:100897. doi:10.1016/j.neo.2023.100897
  • Li AM, Chen SY, Wu JJ, Li JX, Wang J. Ischemic Postconditioning Attenuates Myocardial Ischemia-Reperfusion-Induced Acute Lung Injury by Regulating Endoplasmic Reticulum Stress-Mediated Apoptosis. Braz J Cardiovasc Surg. 2023;38(1):79–87. doi:10.21470/1678-9741-2021-0043
  • Deng JL, He YQ, Sun GC, et al. Tanreqing injection protects against bleomycin-induced pulmonary fibrosis via inhibiting STING-mediated endoplasmic reticulum stress signaling pathway. J Ethnopharmacol. 2023;305:116071. doi:10.1016/j.jep.2022.116071
  • Phan THG, Paliogiannis P, Nasrallah GK, et al. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci. 2021;78(5):2031–2057. doi:10.1007/s00018-020-03693-7
  • Hsu HS, Liu CC, Lin JH, et al. Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis. Sci Rep. 2017;7(1):14272. doi:10.1038/s41598-017-14612-5
  • Delbrel E, Soumare A, Naguez A, et al. HIF-1alpha triggers ER stress and CHOP-mediated apoptosis in alveolar epithelial cells, a key event in pulmonary fibrosis. Sci Rep. 2018;8(1):17939. doi:10.1038/s41598-018-36063-2
  • Zhang Z, Zhang L, Zhou L, Lei YL, Zhang YY, Huang CH. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol. 2019;25:101047. doi:10.1016/j.redox.2018.11.005
  • Niforou K, Cheimonidou C, Trougakos IP. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014;2:323–332. doi:10.1016/j.redox.2014.01.017
  • Chen X, Shen JS, Prywes R. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem. 2002;277(15):13045–13052. doi:10.1074/jbc.M110636200
  • Credle JJ, Finer-Moore JS, Papa FR, Stroud RM, Walter P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 2005;102(52):18773–18784. doi:10.1073/pnas.0509487102
  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;2(6):326–332. doi:10.1038/35014014
  • Kimata Y, Oikawa D, Shimizu Y, Ishiwata-Kimata Y, Kohno K. A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J Cell Biol. 2004;167(3):445–456. doi:10.1083/jcb.200405153
  • Kropski JA, Blackwell TS. Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J Clin Invest. 2018;128(1):64–73. doi:10.1172/JCI93560
  • Senft D, Ronai ZA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci. 2015;40(3):141–148. doi:10.1016/j.tibs.2015.01.002
  • Romero F, Summer R. Protein Folding and the Challenges of Maintaining Endoplasmic Reticulum Proteostasis in Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc. 2017;14(Supplement_5):S410–S413. doi:10.1513/AnnalsATS.201703-207AW
  • Ye J, Rawson RB, Komuro R, et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000;6(6):1355–1364. doi:10.1016/s1097-2765(00)00133-7
  • Shen J, Prywes R. Dependence of site-2 protease cleavage of ATF6 on prior site-1 protease digestion is determined by the size of the luminal domain of ATF6. J Biol Chem. 2004;279(41):43046–43051. doi:10.1074/jbc.M408466200
  • Vekich JA, Belmont PJ, Thuerauf DJ, Glembotski CC. Protein disulfide isomerase-associated 6 is an ATF6-inducible ER stress response protein that protects cardiac myocytes from ischemia/reperfusion-mediated cell death. J Mol Cell Cardiol. 2012;53(2):259–267. doi:10.1016/j.yjmcc.2012.05.005
  • Liu ZW, Zhang Y, Tang ZG, et al. Matrine attenuates cardiac fibrosis by affecting ATF6 signaling pathway in diabetic cardiomyopathy. Eur J Pharmacol. 2017;804:21–30. doi:10.1016/j.ejphar.2017.03.061
  • Li BZ, Gao B, Ye LB, et al. Hepatitis B virus X protein (HBx) activates ATF6 and IRE1-XBP1 pathways of unfolded protein response. Virus Res. 2007;124(1–2):44–49. doi:10.1016/j.virusres.2006.09.011
  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107(7):881–891. doi:10.1016/s0092-8674(01)00611-0
  • He SQ, Fu TT, Yu Y, et al. IRE1alpha regulates skeletal muscle regeneration through Myostatin mRNA decay. J Clin Invest. 2021. doi:10.1172/JCI143737
  • Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–1086. doi:10.1126/science.1209038
  • Mori K. Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem. 2009;146(6):743–750. doi:10.1093/jb/mvp166
  • Calfon M, Zeng H, Urano F, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415(6867):92–96. doi:10.1038/415092a
  • Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal. 2007;9(12):2277–2293. doi:10.1089/ars.2007.1782
  • Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K. A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell. 2003;4(2):265–271. doi:10.1016/s1534-5807(03)00022-4
  • Liu CY, Schroder M, Kaufman RJ. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem. 2000;275(32):24881–24885. doi:10.1074/jbc.M004454200
  • Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE, Hinnebusch AG. Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol. 2001;21(15):5018–5030. doi:10.1128/MCB.21.15.5018-5030.2001
  • Luhr M, Torgersen ML, Szalai P, et al. The kinase PERK and the transcription factor ATF4 play distinct and essential roles in autophagy resulting from tunicamycin-induced ER stress. J Biol Chem. 2019;294(20):8197–8217. doi:10.1074/jbc.RA118.002829
  • Heydt Q, Larrue C, Saland E, et al. Oncogenic FLT3-ITD supports autophagy via ATF4 in acute myeloid leukemia. Oncogene. 2018;37(6):787–797. doi:10.1038/onc.2017.376
  • Cohen DM, Won KJ, Nguyen N, Lazar MA, Chen CS, Steger DJ. ATF4 licenses C/EBPbeta activity in human mesenchymal stem cells primed for adipogenesis. Elife. 2015;4:e06821. doi:10.7554/eLife.06821
  • Ham S, Kim JH, Kim H, Shin JY, Lee Y. ATF4-activated parkin induction contributes to deferasirox-mediated cytoprotection in Parkinson’s disease. Toxicol Res. 2023;39(2):191–199. doi:10.1007/s43188-022-00157-x
  • Griffiths A, Wang J, Song Q, Lee SM, Cordoba-Chacon J, Song Z. ATF4-mediated CD36 upregulation contributes to palmitate-induced lipotoxicity in hepatocytes. Am J Physiol Gastrointest Liver Physiol. 2023;324(5):G341–G353. doi:10.1152/ajpgi.00163.2022
  • Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–633. doi:10.1016/s1097-2765(03)00105-9
  • Qi ZH, Chen LX. Endoplasmic Reticulum Stress and Autophagy. Adv Exp Med Biol. 2019;1206:167–177. doi:10.1007/978-981-15-0602-4_8
  • Byrne AJ, Maher TM, Lloyd CM. Pulmonary Macrophages: a New Therapeutic Pathway in Fibrosing Lung Disease? Trends Mol Med. 2016;22(4):303–316. doi:10.1016/j.molmed.2016.02.004
  • Byrne AJ, Mathie SA, Gregory LG, Lloyd CM. Pulmonary macrophages: key players in the innate defence of the airways. Thorax. 2015;70(12):1189–1196. doi:10.1136/thoraxjnl-2015-207020
  • Aziz M, Matsuda A, Yang WL, Jacob A, Wang P. Milk fat globule-epidermal growth factor-factor 8 attenuates neutrophil infiltration in acute lung injury via modulation of CXCR2. J Immunol. 2012;189(1):393–402. doi:10.4049/jimmunol.1200262
  • Zhao H, Wu QQ, Cao LF, et al. Melatonin inhibits endoplasmic reticulum stress and epithelial-mesenchymal transition during bleomycin-induced pulmonary fibrosis in mice. PLoS One. 2014;9(5):e97266. doi:10.1371/journal.pone.0097266
  • Lawson WE, Cheng DS, Degryse AL, et al. Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci U S A. 2011;108(26):10562–10567. doi:10.1073/pnas.1107559108
  • Korfei M, Ruppert C, Mahavadi P, et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2008;178(8):838–846. doi:10.1164/rccm.200802-313OC
  • Lawson WE, Crossno PF, Polosukhin VV, et al. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol. 2008;294(6):L1119–26. doi:10.1152/ajplung.00382.2007
  • Bridges JP, Wert SE, Nogee LM, Weaver TE. Expression of a human surfactant protein C mutation associated with interstitial lung disease disrupts lung development in transgenic mice. J Biol Chem. 2003;278(52):52739–52746. doi:10.1074/jbc.M309599200
  • Mulugeta S, Maguire JA, Newitt JL, Russo SJ, Kotorashvili A, Beers MF. Misfolded BRICHOS SP-C mutant proteins induce apoptosis via caspase-4- and cytochrome c-related mechanisms. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L720–9. doi:10.1152/ajplung.00025.2007
  • Mulugeta S, Nguyen V, Russo SJ, Muniswamy M, Beers MF. A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. Am J Respir Cell Mol Biol. 2005;32(6):521–530. doi:10.1165/rcmb.2005-0009OC
  • Sitaraman S, Martin EP, Na CL, et al. Surfactant protein C mutation links postnatal type 2 cell dysfunction to adult disease. JCI Insight. 2021;6(14).
  • Rodriguez L, Tomer Y, Carson P, et al. Chronic Expression of a Clinical SFTPC Mutation Causes Murine Lung Fibrosis with Idiopathic Pulmonary Fibrosis Features. Am J Respir Cell Mol Biol. 2023;68(4):358–365. doi:10.1165/rcmb.2022-0203MA
  • Burman A, Kropski JA, Calvi CL, et al. Localized hypoxia links ER stress to lung fibrosis through induction of C/EBP homologous protein. JCI Insight. 2018;3(16).
  • Klymenko O, Huehn M, Wilhelm J, et al. Regulation and role of the ER stress transcription factor CHOP in alveolar epithelial type-II cells. J Mol Med (Berl). 2019;97(7):973–990. doi:10.1007/s00109-019-01787-9
  • Burman A, Tanjore H, Blackwell TS. Endoplasmic reticulum stress in pulmonary fibrosis. Matrix Biol. 2018;68-69:355–365. doi:10.1016/j.matbio.2018.03.015
  • Tanaka Y, Ishitsuka Y, Hayasaka M, et al. The exacerbating roles of CCAAT/enhancer-binding protein homologous protein (CHOP) in the development of bleomycin-induced pulmonary fibrosis and the preventive effects of tauroursodeoxycholic acid (TUDCA) against pulmonary fibrosis in mice. Pharmacol Res. 2015;99:52–62. doi:10.1016/j.phrs.2015.05.004
  • Yang XY, Sun W, Jing XY, Zhang Q, Huang H, Xu ZJ. C/EBP homologous protein promotes Sonic Hedgehog secretion from type II alveolar epithelial cells and activates Hedgehog signaling pathway of fibroblast in pulmonary fibrosis. Respir Res. 2022;23(1):86. doi:10.1186/s12931-022-02012-x
  • Yang XY, Sun W, Jing XY, Zhang Q, Huang H, Xu ZJ. Endoplasmic reticulum stress modulates the fate of lung resident mesenchymal stem cell to myofibroblast via C/EBP homologous protein during pulmonary fibrosis. Stem Cell Res Ther. 2022;13(1):279. doi:10.1186/s13287-022-02966-1
  • Scaffidi AK, Mutsaers SE, Moodley YP, et al. Oncostatin M stimulates proliferation, induces collagen production and inhibits apoptosis of human lung fibroblasts. Br J Pharmacol. 2002;136(5):793–801. doi:10.1038/sj.bjp.0704769
  • Huang CQ, Xiao X, Yang Y, et al. MicroRNA-101 attenuates pulmonary fibrosis by inhibiting fibroblast proliferation and activation. J Biol Chem. 2017;292(40):16420–16439. doi:10.1074/jbc.M117.805747
  • Liu HJ, Fang SC, Wang W, et al. Macrophage-derived MCPIP1 mediates silica-induced pulmonary fibrosis via autophagy. Part Fibre Toxicol. 2016;13(1):55. doi:10.1186/s12989-016-0167-z
  • Wang YN, Huang GJ, Wang ZX, Qin HP, Mo BW, Wang CM. Elongation factor-2 kinase acts downstream of p38 MAPK to regulate proliferation, apoptosis and autophagy in human lung fibroblasts. Exp Cell Res. 2018;363(2):291–298. doi:10.1016/j.yexcr.2018.01.019
  • Maiers JL, Malhi H. Endoplasmic Reticulum Stress in Metabolic Liver Diseases and Hepatic Fibrosis. Semin Liver Dis. 2019;39(2):235–248. doi:10.1055/s-0039-1681032
  • Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol. 2017;13(11):681–696. doi:10.1038/nrneph.2017.129
  • Wu B, Tang L, Kapoor M. Fibroblasts and their responses to chronic injury in pulmonary fibrosis. Semin Arthritis Rheum. 2021;51(1):310–317. doi:10.1016/j.semarthrit.2020.12.003
  • Baek HA, Kim DS, Park HS, et al. Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts. Am J Respir Cell Mol Biol. 2012;46(6):731–739. doi:10.1165/rcmb.2011-0121OC
  • Qin XF, Lin XF, Liu L, et al. Macrophage-derived exosomes mediate silica-induced pulmonary fibrosis by activating fibroblast in an endoplasmic reticulum stress-dependent manner. J Cell Mol Med. 2021;25(9):4466–4477. doi:10.1111/jcmm.16524
  • Cao ZL, Xiao QL, Dai XN, et al. circHIPK2-mediated sigma-1R promotes endoplasmic reticulum stress in human pulmonary fibroblasts exposed to silica. Cell Death Dis. 2017;8(12):3212. doi:10.1038/s41419-017-0017-4
  • Cheng YS, Luo W, Li Z, et al. CircRNA-012091/PPP1R13B-mediated Lung Fibrotic Response in Silicosis via Endoplasmic Reticulum Stress and Autophagy. Am J Respir Cell Mol Biol. 2019;61(3):380–391. doi:10.1165/rcmb.2019-0017OC
  • Song M, Peng H, Guo W, et al. Cigarette Smoke Extract Promotes Human Lung Myofibroblast Differentiation by the Induction of Endoplasmic Reticulum Stress. Respiration. 2019;98(4):347–356. doi:10.1159/000502099
  • Chen X, Li C, Liu JL, He YY, Wei YG, Chen J. Inhibition of ER stress by targeting the IRE1alpha-TXNDC5 pathway alleviates crystalline silica-induced pulmonary fibrosis. Int Immunopharmacol. 2021;95:107519. doi:10.1016/j.intimp.2021.107519
  • Vannella KM, Wynn TA. Mechanisms of Organ Injury and Repair by Macrophages. Annu Rev Physiol. 2017;79:593–617. doi:10.1146/annurev-physiol-022516-034356
  • Larson-Casey JL, Deshane JS, Ryan AJ, Thannickal VJ, Carter AB. Macrophage Akt1 Kinase-Mediated Mitophagy Modulates Apoptosis Resistance and Pulmonary Fibrosis. Immunity. 2016;44(3):582–596. doi:10.1016/j.immuni.2016.01.001
  • Li GQ, Jin FQ, Du JX, He QJ, Yang B, Luo PH. Macrophage-secreted TSLP and MMP9 promote bleomycin-induced pulmonary fibrosis. Toxicol Appl Pharmacol. 2019;366:10–16. doi:10.1016/j.taap.2019.01.011
  • Young LR, Gulleman PM, Short CW, et al. Epithelial-macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky-Pudlak syndrome. JCI Insight. 2016;1(17):e88947. doi:10.1172/jci.insight.88947
  • Wang Y, Zhu JH, Zhang L, et al. Role of C/EBP homologous protein and endoplasmic reticulum stress in asthma exacerbation by regulating the IL-4/signal transducer and activator of transcription 6/transcription factor EC/IL-4 receptor alpha positive feedback loop in M2 macrophages. J Allergy Clin Immunol. 2017;140(6):1550–1561 e8. doi:10.1016/j.jaci.2017.01.024
  • Yao YY, Wang Y, Zhang ZJ, et al. Chop Deficiency Protects Mice Against Bleomycin-induced Pulmonary Fibrosis by Attenuating M2 Macrophage Production. Mol Ther. 2016;24(5):915–925. doi:10.1038/mt.2016.36
  • Oh J, Riek AE, Weng S, et al. Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem. 2012;287(15):11629–11641. doi:10.1074/jbc.M111.338673
  • Ryan AJ, Larson-Casey JL, He C, Murthy S, Carter AB. Asbestos-induced disruption of calcium homeostasis induces endoplasmic reticulum stress in macrophages. J Biol Chem. 2014;289(48):33391–33403. doi:10.1074/jbc.M114.579870
  • Divangahi M, Chen M, Gan H, et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol. 2009;10(8):899–906. doi:10.1038/ni.1758
  • Lim YJ, Choi JA, Choi HH, et al. Endoplasmic reticulum stress pathway-mediated apoptosis in macrophages contributes to the survival of Mycobacterium tuberculosis. PLoS One. 2011;6(12):e28531. doi:10.1371/journal.pone.0028531
  • Yu X, Huang Y, Li YZ, et al. Mycobacterium tuberculosis PE_PGRS1 promotes mycobacteria intracellular survival via reducing the concentration of intracellular free Ca(2+) and suppressing endoplasmic reticulum stress. Mol Immunol. 2023;154:24–32. doi:10.1016/j.molimm.2022.12.007
  • Ayaub EA, Kolb PS, Mohammed-Ali Z, et al. GRP78 and CHOP modulate macrophage apoptosis and the development of bleomycin-induced pulmonary fibrosis. J Pathol. 2016;239(4):411–425. doi:10.1002/path.4738
  • Hu YB, Wu X, Qin XF, Wang L, Pan PH. Role of Endoplasmic Reticulum Stress in Silica-induced Apoptosis in RAW264.7 Cells. Biomed Environ Sci. 2017;30(8):591–600. doi:10.3967/bes2017.078
  • Wulff H, Castle NA. Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol. 2010;3(3):385–396. doi:10.1586/ecp.10.11
  • Olivan-Viguera A, Lozano-Gerona J, Lopez de Frutos L, et al. Inhibition of Intermediate-Conductance Calcium-Activated K Channel (KCa3.1) and Fibroblast Mitogenesis by alpha-Linolenic Acid and Alterations of Channel Expression in the Lysosomal Storage Disorders, Fabry Disease, and Niemann Pick C. Front Physiol. 2017;8:39. doi:10.3389/fphys.2017.00039
  • Sevelsted Moller L, Fialla AD, Schierwagen R, et al. The calcium-activated potassium channel KCa3.1 is an important modulator of hepatic injury. Sci Rep. 2016;6:28770. doi:10.1038/srep28770
  • Perera UE, Organ L, Dewage SNV, Derseh HB, Stent A, Snibson KJ. Increased Levels of ER Stress and Apoptosis in a Sheep Model for Pulmonary Fibrosis Are Alleviated by In Vivo Blockade of the KCa3.1 Ion Channel. Can Respir J. 2021;2021:6683195. doi:10.1155/2021/6683195
  • Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–189. doi:10.1016/j.immuni.2006.01.001
  • Simonian PL, Roark CL, Wehrmann F, et al. Th17-polarized immune response in a murine model of hypersensitivity pneumonitis and lung fibrosis. J Immunol. 2009;182(1):657–665.
  • Jia QY, Li QY, Wang Y, et al. Lung microbiome and transcriptome reveal mechanisms underlying PM2.5 induced pulmonary fibrosis. Sci Total Environ. 2022;831:154974. doi:10.1016/j.scitotenv.2022.154974
  • Duffield JS, Forbes SJ, Constandinou CM, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005;115(1):56–65. doi:10.1172/JCI22675
  • Geng JJ, Zhang K, Chen LN, et al. Enhancement of CD147 on M1 macrophages induces differentiation of Th17 cells in the lung interstitial fibrosis. Biochim Biophys Acta. 2014;1842(9):1770–1782. doi:10.1016/j.bbadis.2014.06.008
  • Dong ZX, Lu X, Yang YN, et al. IL-27 alleviates the bleomycin-induced pulmonary fibrosis by regulating the Th17 cell differentiation. BMC Pulm Med. 2015;15:13. doi:10.1186/s12890-015-0012-4
  • Segawa S, Goto D, Iizuka A, et al. The regulatory role of interferon-gamma producing gamma delta T cells via the suppression of T helper 17 cell activity in bleomycin-induced pulmonary fibrosis. Clin Exp Immunol. 2016;185(3):348–360. doi:10.1111/cei.12802
  • Brucklacher-Waldert V, Ferreira C, Stebegg M, et al. Cellular Stress in the Context of an Inflammatory Environment Supports TGF-beta-Independent T Helper-17 Differentiation. Cell Rep. 2017;19(11):2357–2370. doi:10.1016/j.celrep.2017.05.052
  • Shih YC, Chen CL, Zhang Y, et al. Endoplasmic Reticulum Protein TXNDC5 Augments Myocardial Fibrosis by Facilitating Extracellular Matrix Protein Folding and Redox-Sensitive Cardiac Fibroblast Activation. Circ Res. 2018;122(8):1052–1068. doi:10.1161/CIRCRESAHA.117.312130
  • Chen YT, Jhao PY, Hung CT, et al. Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-beta signaling in kidney fibroblasts. J Clin Invest. 2021;131(5).
  • Jonsson KL, Laustsen A, Krapp C, et al. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat Commun. 2017;8:14391. doi:10.1038/ncomms14391
  • Parvatiyar K, Zhang Z, Teles RM, et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol. 2012;13(12):1155–1161. doi:10.1038/ni.2460
  • Smith JA. STING, the Endoplasmic Reticulum, and Mitochondria: is Three a Crowd or a Conversation? Front Immunol. 2020;11:611347. doi:10.3389/fimmu.2020.611347
  • Zhang Y, Chen WZ, Wang Y. STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress. Biomed Pharmacother. 2020;125:110022. doi:10.1016/j.biopha.2020.110022
  • Savigny F, Schricke C, Lacerda-Queiroz N, et al. Protective Role of the Nucleic Acid Sensor STING in Pulmonary Fibrosis. Front Immunol. 2020;11:588799. doi:10.3389/fimmu.2020.588799
  • Xiao Y, Zhao C, Tai Y, et al. STING mediates hepatocyte pyroptosis in liver fibrosis by Epigenetically activating the NLRP3 inflammasome. Redox Biol. 2023;62:102691. doi:10.1016/j.redox.2023.102691
  • Hu SY, Gao Y, Gao RF, et al. The selective STING inhibitor H-151 preserves myocardial function and ameliorates cardiac fibrosis in murine myocardial infarction. Int Immunopharmacol. 2022;107:108658. doi:10.1016/j.intimp.2022.108658
  • Zhang D, Liu YT, Zhu YZ, et al. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat Cell Biol. 2022;24(5):766–782. doi:10.1038/s41556-022-00894-z
  • Kreuter M, Bonella F, Wijsenbeek M, Maher TM, Spagnolo P. Pharmacological Treatment of Idiopathic Pulmonary Fibrosis: current Approaches, Unsolved Issues, and Future Perspectives. Biomed Res Int. 2015;2015:329481. doi:10.1155/2015/329481
  • Richeldi L, du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–2082. doi:10.1056/NEJMoa1402584
  • Ma YJ, Zhang Q, Wang CX, Wu W. The efficacy and safety of pirfenidone in the treatment of HPS-related pulmonary fibrosis and Idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2022;26(22):8411–8424. doi:10.26355/eurrev_202211_30377
  • Wei Y, Sun L, Liu C, Li LJ. Naringin regulates endoplasmic reticulum stress and mitophagy through the ATF3/PINK1 signaling axis to alleviate pulmonary fibrosis. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(6):1155–1169. doi:10.1007/s00210-023-02390-z
  • Li L, Jin R-J, Ji L. Pachymic acid ameliorates bleomycin-induced pulmonary fibrosis through inhibiting endoplasmic reticulum stress in rats. Environ Toxicol: Int J. 2023. doi:10.1002/tox.23824
  • Song QN, Li M, Li GX, et al. Triptolide improves lung function and endoplasmic reticulum stress in Bleomycin-induced pulmonary fibrosis in mice. Shi Zhen Chinese Medicine. 2022;33(12):2971–2973.
  • Omura T, Asari M, Yamamoto J, et al. Sodium tauroursodeoxycholate prevents paraquat-induced cell death by suppressing endoplasmic reticulum stress responses in human lung epithelial A549 cells. Biochem Biophys Res Commun. 2013;432(4):689–694. doi:10.1016/j.bbrc.2013.01.131
  • Shi ZH, Xu LH, Xie H, et al. Attenuation of intermittent hypoxia-induced apoptosis and fibrosis in pulmonary tissues via suppression of ER stress activation. BMC Pulm Med. 2020;20(1):92. doi:10.1186/s12890-020-1123-0
  • Tong B, Fu L, Hu B, et al. Tauroursodeoxycholic acid alleviates pulmonary endoplasmic reticulum stress and epithelial-mesenchymal transition in bleomycin-induced lung fibrosis. BMC Pulm Med. 2021;21(1):149. doi:10.1186/s12890-021-01514-6
  • Zhang JJ, Chen XQ, Chen HB, et al. Engeletin ameliorates pulmonary fibrosis through endoplasmic reticulum stress depending on lnc949-mediated TGF-beta1-Smad2/3 and JNK signalling pathways. Pharm Biol. 2020;58(1):1105–1114. doi:10.1080/13880209.2020.1834590
  • Baek AR, Hong J, Song KS, et al. Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Exp Mol Med. 2020;52(12):2034–2045. doi:10.1038/s12276-020-00545-z
  • Huang L, Zou H, Zhao L, Xiong G, Hu CL. Effect and mechanism of salidroside on pulmonary fibrosis. J Guangxi Med Univ. 2020;37(08):1494–1499. doi:10.16190/j.cnki.45-1211/r.2020.08.016
  • Luo WJ, Wang CM, Ye MY. Effect and Mechanism of Ginsenoside Rb1 on Lung Function in Rats with Respiratory Failure Induced by Paraquat. J Med Res. 2020;49(02):86–91+98.
  • Chen YC, Chen BC, Huang HM, Lin SH, Lin CH. Activation of PERK in ET-1- and thrombin-induced pulmonary fibroblast differentiation: inhibitory effects of curcumin. J Cell Physiol. 2019;234(9):15977–15988. doi:10.1002/jcp.28256
  • Zheng Q, Tong M, Ou BQ, Liu CZ, Hu CP, Yang Y. Isorhamnetin protects against bleomycin-induced pulmonary fibrosis by inhibiting endoplasmic reticulum stress and epithelial-mesenchymal transition. Int J Mol Med. 2019;43(1):117–126. doi:10.3892/ijmm.2018.3965
  • Wang C, Dong J, Nie J, et al. Amelioration of bleomycin-induced pulmonary fibrosis by chlorogenic acid through endoplasmic reticulum stress inhibition. Apoptosis. 2017;22(9):1147–1156. doi:10.1007/s10495-017-1393-z
  • Gao WH. Study on the Mechanism of Bushen Yifei Xiaozheng Formula in the Intervention of ERS and Clinical Analysis of 28 Cases of IPF. Dissertation. Beijing University of Chinese Medicine; 2017.
  • Yang YX, Chai LM, Yan J, et al. Influences of Bushen Yifei Xiaozheng decoction on the distribution and expression of α-SMA and SP-C protein in IPF rat. Global Traditional Chine Med. 2017;10(06):659–663.
  • Gao WH, Chai LM, Yang YX, et al. Effects of Bushen Yifei Xiaozheng Formula on Expression of Key Molecules in CHOP Signal Pathway in Endoplasmic Reticulum Stress of IPF rat. Liaoning J Traditional Chine Med. 2016;43(09):1987–1990. doi:10.13192/j.issn.1000-1719.2016.09.068
  • He JF, Zhang Y, Tian SQ, et al. Mechanism of Bushen Yifei Xiaozheng Decotion Intervening in Pulmonary Fibrosis Type II Alveolar Epithelial Cell-Mesenchymal Transition Regulating Endoplasmic Reticulum Stress. World J Integrated Traditional Western Med. 2022;17(01):1–5. doi:10.13935/j.cnki.sjzx.220101
  • Wang ZC, Feng FC, He HL, et al. Citrus alkaline extracts prevent endoplasmic reticulum stress in type II alveolar epithelial cells to ameliorate pulmonary fibrosis via the ATF3/PINK1 pathway. Phytomedicine. 2021;89:153599. doi:10.1016/j.phymed.2021.153599
  • Shen MM, Nan YN, Zhang L, et al. Maimendong Decoction Improves Pulmonary Function in Rats With Idiopathic Pulmonary Fibrosis by Inhibiting Endoplasmic Reticulum Stress in AECIIs. Front Pharmacol. 2020;11:1262. doi:10.3389/fphar.2020.01262
  • Lin JM, Li LH. Effect of Gualou Xiebai Decoction on endoplasmic reticulum stress response in pulmonary fibrosis induced by Bleomycin. J Anhui Traditional Chine Med. 2019;38(05):71–76.
  • Qiu Y. Study on TCM Syndrome of Idiopathic Pulmonary Fibrosis and Experimental Study on Intervention of Yougui Yin in Rats with Pulmonary Fibrosis. Dissertation. Beijing University of Chinese Medicine; 2019.
  • Xie RJ, Han B, Zhang CJ, He XF, Yang T, Yang Q. The effect of endoplasmic reticulum stress and oxidative stress in bleomycin induced pulmonary fibrosis and protective effect of Danshaohuaxian capsule in this model. J Chongqing Med Univ. 2011;36(07):805–808. doi:10.13406/j.cnki.cyxb.2011.07.007
  • Han B, Xie RJ, Zhang CJ, He XF, Yang T, Yang Q. The effect of Dan Shao Hua Xian Capsule on expression of endoplasmic reticulum stress related protein GRP78 and NF-κB in bleomycin-induced pulmonary fibrosis. China J Tradition Chinese Med Pharm. 2011;26(11):2551–2554.
  • Turgut NH, Kara H, Elagoz S, Deveci K, Gungor H, Arslanbas E. The Protective Effect of Naringin against Bleomycin-Induced Pulmonary Fibrosis in Wistar Rats. Pulm Med. 2016;2016:7601393. doi:10.1155/2016/7601393
  • Zhao H, Liu MR, Liu H, Suo R, Lu CZ. Naringin protects endothelial cells from apoptosis and inflammation by regulating the Hippo-YAP Pathway. Biosci Rep. 2020;40(3).
  • Akamo AJ, Rotimi SO, Akinloye DI, et al. Naringin prevents cyclophosphamide-induced hepatotoxicity in rats by attenuating oxidative stress, fibrosis, and inflammation. Food Chem Toxicol. 2021;153:112266. doi:10.1016/j.fct.2021.112266
  • Wei CY, Wang HZ, Sun X, et al. Pharmacological profiles and therapeutic applications of pachymic acid (Review). Exp Ther Med. 2022;24(3):547. doi:10.3892/etm.2022.11484
  • Li F, Chen M, Ji JM, et al. Pachymic acid alleviates experimental pancreatic fibrosis through repressing NLRP3 inflammasome activation. Biosci Biotechnol Biochem. 2022;86(11):1497–1505. doi:10.1093/bbb/zbac114
  • Song J, He GN, Dai L. A comprehensive review on celastrol, triptolide and triptonide: insights on their pharmacological activity, toxicity, combination therapy, new dosage form and novel drug delivery routes. Biomed Pharmacother. 2023;162:114705. doi:10.1016/j.biopha.2023.114705
  • Ozcan U, Yilmaz E, Ozcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313(5790):1137–1140. doi:10.1126/science.1128294
  • Li P, Fu D, Sheng QF, Yu SH, Bao XQ, Lv ZB. TUDCA attenuates intestinal injury and inhibits endoplasmic reticulum stress-mediated intestinal cell apoptosis in necrotizing enterocolitis. Int Immunopharmacol. 2019;74:105665. doi:10.1016/j.intimp.2019.05.050
  • Launay N, Ruiz M, Grau L, et al. Tauroursodeoxycholic bile acid arrests axonal degeneration by inhibiting the unfolded protein response in X-linked adrenoleukodystrophy. Acta Neuropathol. 2017;133(2):283–301. doi:10.1007/s00401-016-1655-9
  • Peng XL, Yu J, Yu Q, Bian HD, Huang FP, Liang H. Binding of engeletin with bovine serum albumin: insights from spectroscopic investigations. J Fluoresc. 2012;22(1):511–519. doi:10.1007/s10895-011-0985-1
  • Ye WJ, Chen RJ, Sun W, et al. Determination and pharmacokinetics of engeletin in rat plasma by ultra-high performance liquid chromatography with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1060:144–149. doi:10.1016/j.jchromb.2017.06.018
  • Pegg AE, Casero RA. Current status of the polyamine research field. Methods Mol Biol. 2011;720:3–35. doi:10.1007/978-1-61779-034-8_1
  • Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359:6374. doi:10.1126/science.aan2788
  • Han JX, Luo LL, Wang YC, Wu SR, Kasim VV. Therapeutic potential and molecular mechanisms of salidroside in ischemic diseases. Front Pharmacol. 2022;13:974775. doi:10.3389/fphar.2022.974775
  • Lin Z, Xie RF, Zhong CH, Huang JY, Shi PY, Yao H. Recent progress (2015-2020) in the investigation of the pharmacological effects and mechanisms of ginsenoside Rb(1), a main active ingredient in Panax ginseng Meyer. J Ginseng Res. 2022;46(1):39–53. doi:10.1016/j.jgr.2021.07.008
  • Mokhtari-Zaer A, Marefati N, Atkin SL, Butler AE, Sahebkar A. The protective role of curcumin in myocardial ischemia-reperfusion injury. J Cell Physiol. 2018;234(1):214–222. doi:10.1002/jcp.26848
  • Ahn H, Lee GS. Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation. Phytomedicine. 2017;24:77–86. doi:10.1016/j.phymed.2016.11.019
  • Gao L, Yao R, Liu YZ, et al. Isorhamnetin protects against cardiac hypertrophy through blocking PI3K-AKT pathway. Mol Cell Biochem. 2017;429(1–2):167–177. doi:10.1007/s11010-017-2944-x
  • Rashidi R, Rezaee R, Shakeri A, Hayes AW, Karimi G. A review of the protective effects of chlorogenic acid against different chemicals. J Food Biochem. 2022;46(9):e14254. doi:10.1111/jfbc.14254
  • Lei Y, He H, Raza A, et al. Exogenous melatonin confers cold tolerance in rapeseed (Brassica napus L.) seedlings by improving antioxidants and genes expression. Plant Signal Behav. 2022;17(1):2129289. doi:10.1080/15592324.2022.2129289
  • Chen Z, Wang K, Guo JH, et al. Melatonin Maintains Homeostasis and Potentiates the Anti-inflammatory Response in Staphylococcus aureus-Induced Mastitis through microRNA-16b/YAP1. J Agric Food Chem. 2022;70(48):15255–15270. doi:10.1021/acs.jafc.2c05904
  • Genovese T, Di Paola R, Mazzon E, Muia C, Caputi AP, Cuzzocrea S. Melatonin limits lung injury in bleomycin treated mice. J Pineal Res. 2005;39(2):105–112. doi:10.1111/j.1600-079X.2005.00229.x
  • Yildirim Z, Kotuk M, Erdogan H, et al. Preventive effect of melatonin on bleomycin-induced lung fibrosis in rats. J Pineal Res. 2006;40(1):27–33. doi:10.1111/j.1600-079X.2005.00272.x
  • Chen XY, Kang FQ, Lai JQ, Deng XY, Guo XF, Liu SN. Comparative effectiveness of phlegm-heat clearing Chinese medicine injections for AECOPD: a systematic review and network meta-analysis. J Ethnopharmacol. 2022;292:115043. doi:10.1016/j.jep.2022.115043
  • He YQ, Zhou CC, Deng JL, Wang L, Chen WS. Tanreqing Inhibits LPS-Induced Acute Lung Injury In Vivo and In Vitro Through Downregulating STING Signaling Pathway. Front Pharmacol. 2021;12:746964. doi:10.3389/fphar.2021.746964
  • Yang HM, j Y, Chen SN, et al. Clinical observation of Tanreqing Injection in treating idiopathic pulmonary fibrosis complicated with infection caused by phlegm-heat blockage. Traditional Chine Med J. 2016;15(04):49–51. doi:10.14046/j.cnki.zyytb2002.2016.04.019
  • Hu YH, Yu WJ, Geng L. Study on Effect of Tanreqing Injection in Treatment of Cell in Body and Pulmonary Fibrosis Patients. Chinese Archives Traditional Chin Med. 2018;36(01):61–63. doi:10.13193/j.issn.1673-7717.2018.01.015
  • Zhong YQ, Mao B, Wang G, et al. Tanreqing injection combined with conventional Western medicine for acute exacerbations of chronic obstructive pulmonary disease: a systematic review. J Altern Complement Med. 2010;16(12):1309–1319. doi:10.1089/acm.2009.0686
  • Rivera D, Allkin R, Obon C, Alcaraz F, Verpoorte R, Heinrich M. What is in a name? The need for accurate scientific nomenclature for plants. J Ethnopharmacol. 2014;152(3):393–402. doi:10.1016/j.jep.2013.12.022
  • Wang L, Ma Y, He YQ, et al. Systematic investigation of the pharmacological mechanism of Tanreqing injection in treating respiratory diseases by UHPLC/Q-TOF-MS/MS based on multiple in-house chemical libraries coupled with network pharmacology. J Pharm Biomed Anal. 2021;202:114141. doi:10.1016/j.jpba.2021.114141
  • Yang WF, Cui KY, Tong Q, et al. Traditional Chinese Medicine Tanreqing Targets Both Cell Division and Virulence in Staphylococcus aureus. Front Cell Infect Microbiol. 2022;12:884045. doi:10.3389/fcimb.2022.884045
  • He JF, Zhang Y, Zhang D, Jin YH, Yan J. Theory and Treatment of IPF Based on the “Micro-accumulation in Lung Collaterals”. Acta Chine Medi. 2022;37(03):507–510. doi:10.16368/j.issn.1674-8999.2022.03.096
  • Chai LM, Liu J, Wang Z, Yan J. Treatment of idiopathic pulmonary fibrosis from “pulmonary collateral miniature syndrome”. Guangxi J Traditional Chine Med. 2012;35(02):44–45.
  • Yan J, Liu J, Wang Z, Chai LM. Influences of Bushenyifeixiaozheng decoction on MMPs gene expressions and pathological change in rats with idiopathic pulmonary fibrosis. Mod J Integr Traditional Chinese and Western Med. 2012;21(35):3893–3895.
  • Wu GA, Terol J, Ibanez V, et al. Genomics of the origin and evolution of Citrus. Nature. 2018;554(7692):311–316. doi:10.1038/nature25447
  • Wu Q, Zhou Y, Feng FC, Jin YH, Wang ZC, Zhou XM. Probing into the Mechanism of Alkaline Citrus Extract Promoted Apoptosis in Pulmonary Fibroblasts of Bleomycin-Induced Pulmonary Fibrosis Mice. Evid Based Complement Alternat Med. 2018;(2018):9658950. doi:10.1155/2018/9658950
  • Duan L, Guo L, Dou LL, et al. Discrimination of Citrus reticulata Blanco and Citrus reticulata ‘Chachi’ by gas chromatograph-mass spectrometry based metabolomics approach. Food Chem. 2016;212:123–127. doi:10.1016/j.foodchem.2016.05.141
  • Feng FC, Wang ZC, Li RF, et al. Citrus alkaline extracts prevent fibroblast senescence to ameliorate pulmonary fibrosis via activation of COX-2. Biomed Pharmacother. 2019;112:108669. doi:10.1016/j.biopha.2019.108669
  • Wu Q, Zhou Y, Zhou XM. Citrus Alkaline Extract Delayed the Progression of Pulmonary Fibrosis by Inhibiting p38/NF-kappaB Signaling Pathway-Induced Cell Apoptosis. Evid Based Complement Alternat Med. 2019;2019:1528586. doi:10.1155/2019/1528586
  • Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008;3:399–425. doi:10.1146/annurev.pathmechdis.3.121806.151434
  • Luo M. Treatment of 80 cases of dry cough after cold with Maimendong decoction. Nei Mongol J Traditional Chin Med. 2013;32(26):114. doi:10.16040/j.cnki.cn15-1101.2013.26.048
  • Yu L. Maimendong Decoction for the Treatment of Idiopathic Pulmonary Fibrosis for 30 Cases. Chine Med Modern Distance Educ China. 2015;13(06):55–56.
  • He F, Xu BL, Chen C, et al. Methylophiopogonanone A suppresses ischemia/reperfusion-induced myocardial apoptosis in mice via activating PI3K/Akt/eNOS signaling pathway. Acta Pharmacol Sin. 2016;37(6):763–771. doi:10.1038/aps.2016.14
  • Zhao JW, Chen DS, Deng CS, Wang Q, Zhu W, Lin L. Evaluation of anti-inflammatory activity of compounds isolated from the rhizome of Ophiopogon japonicas. BMC Complement Altern Med. 2017;17(1):7. doi:10.1186/s12906-016-1539-5
  • Wu ZW, Zhao XK, Miyamoto A, et al. Effects of steroidal saponins extract from Ophiopogon japonicus root ameliorates doxorubicin-induced chronic heart failure by inhibiting oxidative stress and inflammatory response. Pharm Biol. 2019;57(1):176–183. doi:10.1080/13880209.2019.1577467
  • Ding MY, Ma WF, Wang XY, et al. A network pharmacology integrated pharmacokinetics strategy for uncovering pharmacological mechanism of compounds absorbed into the blood of Dan-Lou tablet on coronary heart disease. J Ethnopharmacol. 2019;242:112055. doi:10.1016/j.jep.2019.112055
  • Yan LL, Zhang WY, Wei XH, et al. Gualou Xiebai Decoction, a Traditional Chinese Medicine, Prevents Cardiac Reperfusion Injury of Hyperlipidemia Rat via Energy Modulation. Front Physiol. 2018;9:296. doi:10.3389/fphys.2018.00296
  • Zhang HM, Tang DL, Tong L, et al. Gualou xiebai banxia decoction inhibits NF-kappa B-dependent inflammation in myocardial ischemia-reperfusion injury in rats. J Tradit Chin Med. 2011;31(4):338–343. doi:10.1016/s0254-6272(12)60015-6
  • Zhang WY, Yu Y, Yan LL, et al. Discovery of cardio-protective constituents of Gualou Xiebai Decoction, a classical traditional Chinese medicinal formula. Phytomedicine. 2019;54:318–327. doi:10.1016/j.phymed.2018.04.047
  • Li C, Zhang WY, Yu Y, et al. Discovery of the mechanisms and major bioactive compounds responsible for the protective effects of Gualou Xiebai Decoction on coronary heart disease by network pharmacology analysis. Phytomedicine. 2019;56:261–268. doi:10.1016/j.phymed.2018.11.010
  • Aldous SJ. Cardiac biomarkers in acute myocardial infarction. Int J Cardiol. 2013;164(3):282–294. doi:10.1016/j.ijcard.2012.01.081
  • Xiang Z, Wang YZ, Liu SD. The chemical and metabolite profiles of Gualou-Xiebai-Banxia decoction, a classical traditional Chinese medicine formula, by using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and in-house software. J Ethnopharmacol. 2022;288:114994. doi:10.1016/j.jep.2022.114994
  • Wang QX. To Investigate the Mechanism of Yougui Yin Inhibiting MLO-Y4 Bone Cell Apoptosis Based on HIF-1α-Mediated Mitochondrial Autophagy. Dissertation. Shaanxi University of Chinese Medicine; 2020.
  • Jin WM, Sun ZH, Qin F. Study on the Regulation and Renal Protective effect of Youguiyin on ROS /NF-κB Signal Pathway in Rats with Gouty Nephropathy. Chinese J Integr Traditional and Western Nephrol. 2021;22(02):106–110+189.
  • Yu L, Zhao XK, Mu M, et al. Danshao Huaxian capsule attenuates hepatic fibrosis induced by CCL4 in rats by up-regulating expression of ALK2 and p-Smad1/5/8. Chongqing Med. 2016;45(35):4904–4907+4910.