132
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Model-Informed Precision Dosing of Isoniazid: Parametric Population Pharmacokinetics Model Repository

, , , , , , , & show all
Pages 801-818 | Received 10 Aug 2023, Accepted 07 Mar 2024, Published online: 15 Mar 2024

References

  • World Health Organization. Global tuberculosis report; 2022. Available from: https://www.who.int/publications-detail-redirect/9789240061729. Accessed March 8, 2024.
  • Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74(8):839–854. doi:10.1007/s40265-014-0222-8
  • Peloquin CA, Davies GR. The Treatment of Tuberculosis. Clin Pharmacol Ther. 2021;110(6):1455–1466. doi:10.1002/cpt.2261
  • World Health Organization. WHO consolidated guidelines on tuberculosis: tuberculosis preventive treatment: module 1: prevention; 2020. Available from: https://www.who.int/publications/i/item/9789240001503. Accessed March 8, 2024.
  • Jayaram R, Shandil RK, Gaonkar S, et al. Isoniazid pharmacokinetics-pharmacodynamics in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2004;48(8):2951–2957. doi:10.1128/AAC.48.8.2951-2957.2004
  • Gumbo T, Louie A, Liu W, et al. Isoniazid bactericidal activity and resistance emergence: integrating pharmacodynamics and pharmacogenomics to predict efficacy in different ethnic populations. Antimicrob Agents Chemother. 2007;51(7):2329–2336. doi:10.1128/AAC.00185-07
  • Pasipanodya JG, McIlleron H, Burger A, et al. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208(9):1464–1473. doi:10.1093/infdis/jit352
  • Sturkenboom MGG, Märtson A-G, Svensson EM, et al. Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clin Pharmacokinet. 2021;60(6):685–710. doi:10.1007/s40262-021-00997-0
  • Martson AG, Burch G, Ghimire S, et al. Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems. Expert Opin Drug Metab Toxicol. 2021;17(1):23–39. doi:10.1080/17425255.2021.1836158
  • Parkin DP, Vandenplas S, Botha FJ, et al. Trimodality of isoniazid elimination: phenotype and genotype in patients with tuberculosis. Am J Respir Crit Care Med. 1997;155(5):1717–1722. doi:10.1164/ajrccm.155.5.9154882
  • Donald PR, Parkin DP, Seifart HI, et al. The influence of dose and N-acetyltransferase-2 (NAT2) genotype and phenotype on the pharmacokinetics and pharmacodynamics of isoniazid. Eur J Clin Pharmacol. 2007;63(7):633–639. doi:10.1007/s00228-007-0305-5
  • Garcia-Cremades M, Solans BP, Strydom N, et al. Emerging therapeutics, technologies, and drug development strategies to address patient nonadherence and improve tuberculosis treatment. Annu Rev Pharmacol Toxicol. 2022;62(1):197–210. doi:10.1146/annurev-pharmtox-041921-074800
  • Wilkins JJ, Langdon G, McIlleron H, et al. Variability in the population pharmacokinetics of isoniazid in South African tuberculosis patients. Br J Clin Pharmacol. 2011;72(1):51–62. doi:10.1111/j.1365-2125.2011.03940.x
  • Pasipanodya JG, Srivastava S, Gumbo T. Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy. Clin Infect Dis. 2012;55(2):169–177. doi:10.1093/cid/cis353
  • Swaminathan S, Pasipanodya JG, Ramachandran G, et al. Drug concentration thresholds predictive of therapy failure and death in children with tuberculosis: bread crumb trails in random forests. Clin Infect Dis. 2016;63(suppl 3):S63–s74. doi:10.1093/cid/ciw471
  • Erwin ER, Addison AP, John SF, et al. Pharmacokinetics of isoniazid: the good, the bad, and the alternatives. Tuberculosis. 2019;116:S66–s70. doi:10.1016/j.tube.2019.04.012
  • Torok ME, Aljayyoussi G, Waterhouse D, et al. Suboptimal exposure to anti-TB drugs in a TBM/HIV+ Population is not related to antiretroviral therapy. Clin Pharmacol Ther. 2018;103(3):449–457. doi:10.1002/cpt.646
  • Darwich AS, Polasek TM, Aronson JK, et al. Model-informed precision dosing: background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy. Annu Rev Pharmacol Toxicol. 2021;61(1):225–245. doi:10.1146/annurev-pharmtox-033020-113257
  • Qin Y, Zhang -L-L, Ye Y-R, et al. Parametric population pharmacokinetics of linezolid: a systematic review. Br J Clin Pharmacol. 2022;88(9):4043–4066. doi:10.1111/bcp.15368
  • Chen YT, Wang C-Y, Yin Y-W, et al. Population pharmacokinetics of oxcarbazepine: a systematic review. Expert Rev Clin Pharmacol. 2021;14(7):853–864. doi:10.1080/17512433.2021.1917377
  • Li ZR, Wang C-Y, Zhu X, et al. Population Pharmacokinetics of Levetiracetam: a Systematic Review. Clin Pharmacokinet. 2021;60(3):305–318. doi:10.1007/s40262-020-00963-2
  • Liu X, Ju G, Yang W, et al. Escitalopram personalized dosing: a population pharmacokinetics repository method. Drug Des Devel Ther. 2023;17:2955–2967. doi:10.2147/DDDT.S425654
  • Uster DW, Stocker SL, Carland JE, et al. A model averaging/selection approach improves the predictive performance of model-informed precision dosing: vancomycin as a case study. Clin Pharmacol Ther. 2021;109(1):175–183. doi:10.1002/cpt.2065
  • Kantasiripitak W, Outtier A, Wicha SG, et al. Multi-model averaging improves the performance of model-guided infliximab dosing in patients with inflammatory bowel diseases. CPT Pharmacometrics Syst Pharmacol. 2022;11(8):1045–1059. doi:10.1002/psp4.12813
  • Tan WR, Noor Harun &, Sheikh Ghadzi &M, et al. Systematic review of population pharmacokinetic models of isoniazid in children and adults with tuberculosis. Malaysian J Pharm. 2022;8(2):1–15. doi:10.52494/DJIQ7058
  • Thomas L, Raju AP. Influence of N-acetyltransferase 2 (NAT2) genotype/single nucleotide polymorphisms on clearance of isoniazid in tuberculosis patients: a systematic review of population pharmacokinetic models. Eur J Clin Pharmacol. 2022;78(10):1535–1553. doi:10.1007/s00228-022-03362-7
  • Li J, Cai X, Chen Y, et al. Parametric population pharmacokinetics of isoniazid: a systematic review. Expert Rev Clin Pharmacol. 2023;16(5):467–489. doi:10.1080/17512433.2023.2196401
  • Soedarsono S, Jayanti RP, Mertaniasih NM, et al. Development of population pharmacokinetics model of isoniazid in Indonesian patients with tuberculosis. Int J Infect Dis. 2022;117:8–14. doi:10.1016/j.ijid.2022.01.003
  • Horita Y, Alsultan A, Kwara A, et al. Evaluation of the adequacy of WHO revised dosages of the first-line antituberculosis drugs in children with tuberculosis using population pharmacokinetic modeling and simulations. Antimicrob Agents Chemother. 2018;62(9). doi:10.1128/AAC.00008-18
  • Denti P, Wasmann RE, van Rie A, et al. Optimizing dosing and fixed-dose combinations of rifampicin, isoniazid, and pyrazinamide in pediatric patients with tuberculosis: a prospective population pharmacokinetic study. Clin Infect Dis. 2022;75(1):141–151. doi:10.1093/cid/ciab908
  • Jing W, Zong Z, Tang B, et al. Population pharmacokinetic analysis of isoniazid among pulmonary tuberculosis patients from China. Antimicrob Agents Chemother. 2020;64(3). doi:10.1128/AAC.01736-19
  • Panjasawatwong N, Wattanakul T, Hoglund RM, et al. Population pharmacokinetic properties of antituberculosis drugs in Vietnamese children with tuberculous meningitis. Antimicrob Agents Chemother. 2020;65(1). doi:10.1128/AAC.00487-20
  • Chen B, Shi H-Q, Feng MR, et al. Population pharmacokinetics and pharmacodynamics of isoniazid and its metabolite acetylisoniazid in Chinese population. Front Pharmacol. 2022;13:932686. doi:10.3389/fphar.2022.932686
  • Huerta-Garcia AP, Medellín-Garibay SE, Ortiz-álvarez A, et al. Population pharmacokinetics of isoniazid and dose recommendations in Mexican patients with tuberculosis. Int J Clin Pharm. 2020;42(4):1217–1226. doi:10.1007/s11096-020-01086-1
  • Abdelwahab MT, Leisegang R, Dooley KE, et al. Population pharmacokinetics of isoniazid, pyrazinamide, and ethambutol in pregnant South African Women with tuberculosis and HIV. Antimicrob Agents Chemother. 2020;64(3). doi:10.1128/AAC.01978-19
  • McCallum AD, Pertinez HE, Else LJ, et al. Intrapulmonary pharmacokinetics of first-line anti-tuberculosis drugs in Malawian patients with tuberculosis. Clin Infect Dis. 2021;73(9):e3365–e3373. doi:10.1093/cid/ciaa1265
  • Gao Y, Davies Forsman L, Ren W, et al. Drug exposure of first-line anti-tuberculosis drugs in China: a prospective pharmacological cohort study. Br J Clin Pharmacol. 2021;87(3):1347–1358. doi:10.1111/bcp.14522
  • Sundell J, Bienvenu E, Janzén D, et al. Model-based assessment of variability in isoniazid pharmacokinetics and metabolism in patients co-infected with tuberculosis and HIV: implications for a Novel Dosing Strategy. Clin Pharmacol Ther. 2020;108(1):73–80. doi:10.1002/cpt.1806
  • Cho YS, Jang TW, Kim H-J, et al. Isoniazid population pharmacokinetics and dose recommendation for Korean patients with tuberculosis based on target attainment analysis. J Clin Pharmacol. 2021;61(12):1567–1578. doi:10.1002/jcph.1931
  • Naidoo A, Chirehwa M, Ramsuran V, et al. Effects of genetic variability on rifampicin and isoniazid pharmacokinetics in South African patients with recurrent tuberculosis. Pharmacogenomics. 2019;20(4):225–240. doi:10.2217/pgs-2018-0166
  • Mahmood I. Misconceptions and issues regarding allometric scaling during the drug development process. Expert Opin Drug Metab Toxicol. 2018;14(8):843–854. doi:10.1080/17425255.2018.1499725
  • Rey E, Gendrel D, Treluyer JM, et al. Isoniazid pharmacokinetics in children according to acetylator phenotype. Fundam Clin Pharmacol. 2001;15(5):355–359. doi:10.1046/j.1472-8206.2001.00044.x
  • Foracchia M, Hooker A, Vicini P, et al. POPED, a software for optimal experiment design in population kinetics. Comput Methods Programs Biomed. 2004;74(1):29–46. doi:10.1016/S0169-2607(03)00073-7