205
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

The Role of Rho Kinase Inhibitors in Corneal Diseases

ORCID Icon, , , ORCID Icon &
Pages 97-108 | Received 15 Aug 2023, Accepted 10 Jan 2024, Published online: 18 Jan 2024

References

  • Klintworth GK. Corneal dystrophies. Orphanet J Rare Dis. 2009;4(1):7. doi:10.1186/1750-1172-4-7
  • Gomes JAP, Azar DT, Baudouin C, et al. TFOS DEWS II iatrogenic report. Ocul Surf. 2017;15(3):511–538. doi:10.1016/j.jtos.2017.05.004
  • Bowling B. Kanski’s Clinical Ophthalmology. Edinburgh: Elsevier; 2016.
  • Jeang LJ, Margo CE, Espana EM. Diseases of the corneal endothelium. Exp Eye Res. 2021;205:108495. doi:10.1016/j.exer.2021.108495
  • Rao PV, Pattabiraman PP, Kopczynski C. Role of the Rho GTPase/Rho kinase signaling pathway in pathogenesis and treatment of glaucoma: bench to bedside research. Exp Eye Res. 2017;158:23–32. doi:10.1016/j.exer.2016.08.023
  • Moshirfar M, Parker L, Birdsong OC, et al. Use of Rho kinase inhibitors in ophthalmology: a review of the literature; 2018.
  • Karri R, Chong EW. ROCK inhibitors in ophthalmology: a critical review of the existing clinical evidence. Clin Experiment Ophthalmol. 2023;ceo.14224. doi:10.1111/ceo.14224
  • Narumiya S, Tanji M, Ishizaki T. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev. 2009;28(1–2):65–76. doi:10.1007/s10555-008-9170-7
  • Chen M, Liu A, Ouyang Y, Huang Y, Chao X, Pi R. Fasudil and its analogs: a new powerful weapon in the long war against central nervous system disorders? Expert Opin Investig Drugs. 2013;22(4):537–550. doi:10.1517/13543784.2013.778242
  • Singh IP, Fechtner RD, Myers JS, et al. Pooled efficacy and safety profile of netarsudil ophthalmic solution 0.02% in patients with open-angle glaucoma or ocular hypertension. J Glaucoma. 2020;29(10):878–884. doi:10.1097/IJG.0000000000001634
  • Asrani S, Bacharach J, Holland E, et al. Fixed-dose combination of netarsudil and latanoprost in ocular hypertension and open-angle glaucoma: pooled efficacy/safety analysis of phase 3 MERCURY-1 and −2. Adv Ther. 2020;37(4):1620–1631. doi:10.1007/s12325-020-01277-2
  • Tanihara H, Inoue T, Yamamoto T, et al. One-year clinical evaluation of 0.4% ripasudil (K-115) in patients with open-angle glaucoma and ocular hypertension. Acta Ophthalmol. 2016;94(1):e26–e34. doi:10.1111/aos.12829
  • Sakata R, Fujishiro T, Saito H, Honjo M, Shirato S, Aihara M. The additive effect of ROCK inhibitor on prostaglandin-treated Japanese patients with glaucoma indicating 15 mmHg and under: ROCK U-15. Adv Ther. 2021;38(7):3760–3770. doi:10.1007/s12325-021-01775-x
  • Luo LJ, Nguyen DD, Lai JY. Harnessing the tunable cavity of nanoceria for enhancing Y-27632-mediated alleviation of ocular hypertension. Theranostics. 2021;11(11):5447–5463. doi:10.7150/thno.54525
  • Okumura N, Okazaki Y, Inoue R, et al. Effect of the rho-associated kinase inhibitor eye drop (Ripasudil) on corneal endothelial wound healing. Invest Opthalmol Vis Sci. 2016;57(3):1284. doi:10.1167/iovs.15-18586
  • Kinoshita S, Koizumi N, Ueno M, et al. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018;378(11):995–1003. doi:10.1056/NEJMoa1712770
  • Kinoshita S, Colby KA, Kruse FE. A close look at the clinical efficacy of rho-associated protein kinase inhibitor eye drops for fuchs endothelial corneal dystrophy. Cornea. 2021;40:1225–1228. doi:10.1097/ICO.0000000000002642
  • Parekh M, Miall A, Deshpande N, Jurkunas UV. Effect of ROCK inhibitor on cell migration in fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci. 2022;63:7.
  • Inomata T, Fujimoto K, Okumura Y, et al. Novel immunotherapeutic effects of topically administered ripasudil (K-115) on corneal allograft survival. Sci Rep. 2020;10(1):19817. doi:10.1038/s41598-020-76882-w
  • Kopecny LR, Lee BWH, Coroneo MT. A systematic review on the effects of ROCK inhibitors on proliferation and/or differentiation in human somatic stem cells: a hypothesis that ROCK inhibitors support corneal endothelial healing via acting on the limbal stem cell niche. Ocul Surf. 2023;27:16–29. doi:10.1016/j.jtos.2022.12.008
  • Amano M, Chihara K, Kimura K, et al. Formation of actin stress fibers and focal adhesions enhanced by rho-kinase. Science. 1997;275(5304):1308–1311. doi:10.1126/science.275.5304.1308
  • Maekawa M, Ishizaki T, Boku S, et al. Signaling from rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 1999;285:895–898. doi:10.1126/science.285.5429.895
  • Totsukawa G, Yamakita Y, Yamashiro S, Hartshorne DJ, Sasaki Y, Matsumura F. Distinct roles of rock (rho-kinase) and mlck in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3t3 fibroblasts. J Cell Biol. 2000;150(4):797–806. doi:10.1083/jcb.150.4.797
  • Nakamura M, Nagano T, Chikama T, Nishida T. Role of the small GTP-binding protein rho in epithelial cell migration in the rabbit cornea. Invest Ophthalmol Visual Sci. 2001;42:5.
  • Yin J, Yu FSX. Rho kinases regulate corneal epithelial wound healing. Am J Physiol Cell Physiol. 2008;295:C378–87. doi:10.1152/ajpcell.90624.2007
  • Riento K, Ridley AJ. ROCKs: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol. 2003;4(6):446–456. doi:10.1038/nrm1128
  • Leung T, Chen XQ, Manser E, Lim L. The p160 RhoA-Binding Kinase ROK is a member of a kinase family and is involved in the reorganization of the cytoskeleton. MOL CELL BIOL. 1996;16:5313–5327. doi:10.1128/MCB.16.10.5313
  • Katoh K, Kano Y, Noda Y. Rho-associated kinase-dependent contraction of stress fibres and the organization of focal adhesions. J R Soc Interface. 2011;8(56):305–311. doi:10.1098/rsif.2010.0419
  • Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389:990–994. doi:10.1038/40187
  • Olson MF. Applications for ROCK kinase inhibition. Curr Opin Cell Biol. 2008;20(2):242–248. doi:10.1016/j.ceb.2008.01.002
  • Lin CW, Sherman B, Moore LA, et al. Discovery and preclinical development of netarsudil, a novel ocular hypotensive agent for the treatment of glaucoma. J Ocul Pharmacol Ther. 2018;34(1–2):40–51. doi:10.1089/jop.2017.0023
  • Kubo T. The therapeutic effects of Rho-ROCK inhibitors on CNS disorders. Ther Clin Risk Manag. 2008;4:605–615. doi:10.2147/TCRM.S2907
  • Nguyen Dinh Cat A, Callera GE, Friederich-Persson M, et al. Vascular dysfunction in obese diabetic db/db mice involves the interplay between aldosterone/mineralocorticoid receptor and Rho kinase signaling. Sci Rep. 2018;8(1):2952. doi:10.1038/s41598-018-21087-5
  • Rodriguez-Hernandez I, Cantelli G, Bruce F, Sanz-Moreno V. Rho, ROCK and actomyosin contractility in metastasis as drug targets. F1000Research. 2016;5:783. doi:10.12688/f1000research.7909.1
  • Kimura K, Ito M, Amano M, et al. Regulation of myosin phosphatase by rho and rho-associated kinase (Rho-Kinase). Science. 1996;273:245–248. doi:10.1126/science.273.5272.245
  • Vercammen H, Miron A, Oellerich S, et al. Corneal endothelial wound healing: understanding the regenerative capacity of the innermost layer of the cornea. Transl Res. 2022;248:111–127. doi:10.1016/j.trsl.2022.05.003
  • Okumura N, Koizumi N, Ueno M, et al. The new therapeutic concept of using a rho kinase inhibitor for the treatment of corneal endothelial dysfunction. Cornea. 2011;30(Supplement 1):S54–S59. doi:10.1097/ICO.0b013e3182281ee1
  • Narumiya S, Ishizaki T, Ufhata M. Use and properties of ROCK-specific inhibitor Y-27632. In: Methods in Enzymology. Elsevier; 2000:273–284. doi:10.1016/S0076-6879(00)25449-9
  • Syed ZA, Rapuano CJ. Rho kinase (ROCK) inhibitors in the management of corneal endothelial disease. Curr Opin Ophthalmol. 2021;32(3):268–274. doi:10.1097/ICU.0000000000000748
  • Hahmann C, Schroeter T. Rho-kinase inhibitors as therapeutics: from pan inhibition to isoform selectivity. Cell Mol Life Sci. 2010;67(2):171–177. doi:10.1007/s00018-009-0189-x
  • Meekins LC, Rosado-Adames N, Maddala R, Zhao JJ, Rao PV, Afshari NA. Corneal endothelial cell migration and proliferation enhanced by rho kinase (ROCK) inhibitors in in vitro and in vivo models. Invest Opthalmol Vis Sci. 2016;57(15):6731. doi:10.1167/iovs.16-20414
  • Okumura N, Ueno M, Koizumi N, et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK Inhibitor. Invest Opthalmol Vis Sci. 2009;50(8):3680. doi:10.1167/iovs.08-2634
  • Okumura N, Nakano S, Kay EP, et al. Involvement of Cyclin D and p27 in cell proliferation mediated by ROCK Inhibitors Y-27632 and Y-39983 during corneal endothelium wound healing. Invest Opthalmol Vis Sci. 2014;55(1):318. doi:10.1167/iovs.13-12225
  • Okumura N, Kinoshita S, Koizumi N. Application of rho kinase inhibitors for the treatment of corneal endothelial diseases. J Ophthalmol. 2017;2017:1–8. doi:10.1155/2017/2646904
  • Huang MJ, Kane S, Dhaliwal DK. Descemetorhexis without endothelial keratoplasty versus DMEK for treatment of fuchs endothelial corneal dystrophy. Cornea. 2018;37(12):1479–1483. doi:10.1097/ICO.0000000000001742
  • Davies E, Jurkunas U, Pineda R. Pilot study of corneal clearance with the use of a rho-kinase inhibitor after descemetorhexis without endothelial keratoplasty for fuchs endothelial corneal dystrophy. Cornea. 2021;40(7):899–902. doi:10.1097/ICO.0000000000002691
  • Okumura N, Koizumi N, Kay EP, et al. The ROCK inhibitor eye drop accelerates corneal endothelium wound healing. Invest Opthalmol Vis Sci. 2013;54(4):2493. doi:10.1167/iovs.12-11320
  • Pakravan M, Beni AN, Ghahari E, et al. The ocular hypotensive efficacy of topical fasudil, a rho-associated protein kinase inhibitor, in patients with end-stage glaucoma. Am J Ther. 2017;24(6):e676–e680. doi:10.1097/MJT.0000000000000362
  • Drugbank. Y-27632. Available from: https://go.drugbank.com/drugs/DB08756. Accessed December 12, 2023.
  • Fasudil. In: Wikipedia; 2023. Available from: https://commons.wikimedia.org/wiki/File:Fasudil.svg. Accessed December 12, 2023.
  • Drugbank. Ripasudil. Available from: https://go.drugbank.com/drugs/DB13165. Accessed December 12, 2023.
  • Drugbank. Netarsudil. Available from: https://go.drugbank.com/drugs/DB13931. Accessed December 12, 2023.
  • Ishizaki T, Uehata M, Tamechika I, et al. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol. 2000;57:976–983.
  • Defert O, Boland S. Rho kinase inhibitors: a patent review (2014 – 2016). Expert Opin Ther Pat. 2017;27(4):507–515. doi:10.1080/13543776.2017.1272579
  • Li G, Mukherjee D, Navarro I, et al. Visualization of conventional outflow tissue responses to netarsudil in living mouse eyes. Eur J Pharmacol. 2016;787:20–31. doi:10.1016/j.ejphar.2016.04.002
  • Li M, Huang Y, Ma AAK, Lin E, Diamond MI. Y-27632 improves rotarod performance and reduces huntingtin levels in R6/2 mice. Neurobiol Dis. 2009;36(3):413–420. doi:10.1016/j.nbd.2009.06.011
  • Ahmadieh H, Nourinia R, Hafezi-Moghadam A, et al. Intravitreal injection of a Rho-kinase inhibitor (fasudil) combined with bevacizumab versus bevacizumab monotherapy for diabetic macular oedema: a pilot randomised clinical trial. Br J Ophthalmol. 2019;103(7):922–927. doi:10.1136/bjophthalmol-2018-312244
  • Mietzner R, Kade C, Froemel F, et al. Fasudil loaded PLGA microspheres as potential intravitreal depot formulation for glaucoma therapy. Pharmaceutics. 2020;12(8):706. doi:10.3390/pharmaceutics12080706
  • Chen H, Lin Y, Han M, Bai S, Wen S. Simultaneous quantitative analysis of fasudil and its active metabolite in human plasma by liquid chromatography electro-spray tandem mass spectrometry. J Pharm Biomed Anal. 2010;52(2):242–248. doi:10.1016/j.jpba.2009.12.028
  • Garnock-Jones KP. Ripasudil: first Global Approval. Drugs. 2014;74(18):2211–2215. doi:10.1007/s40265-014-0333-2
  • Tanihara H, Inoue T, Yamamoto T, et al. Intra-ocular pressure-lowering effects of a Rho kinase inhibitor, ripasudil (K-115), over 24 hours in primary open-angle glaucoma and ocular hypertension: a randomized, open-label, crossover study. Acta Ophthalmol. 2015;93(4):e254–e260. doi:10.1111/aos.12599
  • Tanihara H, Inoue T, Yamamoto T, et al. Additive intraocular pressure–lowering effects of the rho kinase inhibitor ripasudil (K-115) Combined with timolol or latanoprost: a report of 2 randomized clinical trials. JAMA Ophthalmol. 2015;133(7):755. doi:10.1001/jamaophthalmol.2015.0525
  • Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Araie M. Phase 2 randomized clinical study of a rho kinase inhibitor, K-115, in primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol. 2013;156(4):731–736.e2. doi:10.1016/j.ajo.2013.05.016
  • Moura-Coelho N, Tavares Ferreira J, Bruxelas CP, Dutra-Medeiros M, Cunha JP, Pinto Proença R. Rho kinase inhibitors—a review on the physiology and clinical use in Ophthalmology. Graefes Arch Clin Exp Ophthalmol. 2019;257(6):1101–1117. doi:10.1007/s00417-019-04283-5
  • Kaneko Y, Ohta M, Inoue T, et al. Effects of K-115 (Ripasudil), a novel ROCK inhibitor, on trabecular meshwork and Schlemm’s canal endothelial cells. Sci Rep. 2016;6(1):19640. doi:10.1038/srep19640
  • Inoue T, Tanihara H. Ripasudil hydrochloride hydrate: targeting Rho kinase in the treatment of glaucoma. Expert Opin Pharmacother. 2017;18(15):1669–1673. doi:10.1080/14656566.2017.1378344
  • Wang RF, Williamson JE, Kopczynski C, Serle JB. Effect of 0.04% AR-13324, a ROCK, and norepinephrine transporter inhibitor, on aqueous humor dynamics in normotensive monkey eyes. J Glaucoma. 2015;24(1):51–54. doi:10.1097/IJG.0b013e3182952213
  • Okumura N, Koizumi N, Ueno M, et al. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am J Pathol. 2012;181(1):268–277. doi:10.1016/j.ajpath.2012.03.033
  • Moloney G, Garcerant Congote D, Hirnschall N, et al. Descemet stripping only supplemented with topical ripasudil for Fuchs endothelial dystrophy 12-month outcomes of the Sydney Eye Hospital Study. Cornea. 2021;40(3):320–326. doi:10.1097/ICO.0000000000002437
  • Macsai MS, Shiloach M. Use of topical rho kinase inhibitors in the treatment of fuchs dystrophy after descemet stripping only. Cornea. 2019;38(5):529–534. doi:10.1097/ICO.0000000000001883
  • Price MO, Price FW. Randomized, double-masked, pilot study of netarsudil 0.02% ophthalmic solution for treatment of corneal edema in fuchs dystrophy. Am J Ophthalmol. 2021;227:100–105. doi:10.1016/j.ajo.2021.03.006
  • Zeng P, Biao PR, Li P, et al. Fasudil hydrochloride, a potent ROCK inhibitor, inhibits corneal neovascularization after alkali burns in mice. Mol Vis. 2015;21:1.
  • Davies E. Case series: novel utilization of rho-kinase inhibitor for the treatment of corneal edema. Cornea. 2021;40(1):116–120. doi:10.1097/ICO.0000000000002421
  • Moshirfar M, Somani AN, Vaidyanathan U, Patel BC. Fuchs Endothelial Dystrophy. StatPearls. StatPearls Publishing; 2023. Available from. http://www.ncbi.nlm.nih.gov/books/NBK545248/. Accessed June 28, 2023.
  • Price MO, Mehta JS, Jurkunas UV, Price FW. Corneal endothelial dysfunction: evolving understanding and treatment options. Prog Retin Eye Res. 2021;82:100904. doi:10.1016/j.preteyeres.2020.100904
  • Jurkunas UV. Fuchs endothelial corneal dystrophy through the prism of oxidative stress. Cornea. 2018;37:S50. doi:10.1097/ICO.0000000000001775
  • Chow SC, Chan JCH. Review on the use of topical ocular hypertonic saline in corneal edema. Cornea. 2021;40(4):533. doi:10.1097/ICO.0000000000002652
  • Blitzer AL, Colby KA. Update on the surgical management of fuchs endothelial corneal dystrophy. Ophthalmol Ther. 2020;9(4):757–765. doi:10.1007/s40123-020-00293-3
  • Feizi S. Corneal endothelial cell dysfunction: etiologies and management. Ther Adv Ophthalmol. 2018;10:2515841418815802. doi:10.1177/2515841418815802
  • Feinbaum C. New treatment reduces corneal oedema after cataract surgery. Ophthalmology Times; 2015. Available from: https://www.ophthalmologytimes.com/view/ote-new-treatment-reduces-corneal-oedema-after-cataract-surgery. Accessed June 29, 2023.
  • Gonçalves ED, Campos M, Paris F, Gomes JÁP, de Farias CC. Ceratopatia bolhosa: etiopatogênese e tratamento. Arq Bras Oftalmol. 2008;71:61–64. doi:10.1590/S0004-27492008000700012
  • Antonini M, Coassin M, Gaudenzi D, Di Zazzo A. Rho-associated kinase inhibitor eye drops in challenging cataract surgery. Am J Ophthalmol Case Rep. 2022;25:101245. doi:10.1016/j.ajoc.2021.101245
  • Chang JH, Gabison EE, Kato T, Azar DT. Corneal neovascularization. Curr Opin Ophthalmol. 2001;12(4):242–249. doi:10.1097/00055735-200108000-00002
  • Sijnave D, Van Bergen T, Castermans K, et al. Inhibition of rho-associated kinase prevents pathological wound healing and neovascularization after corneal Trauma. Cornea. 2015;34(9):1120–1129. doi:10.1097/ICO.0000000000000493
  • Silva L, Najafi A, Suwan Y, Teekhasaenee C, Ritch R. The iridocorneal endothelial syndrome. Surv Ophthalmol. 2018;63(5):665–676. doi:10.1016/j.survophthal.2018.01.001
  • Saito H, Kagami S, Mishima K, Mataki N, Fukushima A, Araie M. Long-term side effects including blepharitis leading to discontinuation of ripasudil. J Glaucoma. 2019;28(4):289–293. doi:10.1097/IJG.0000000000001203
  • Maruyama Y, Ikeda Y, Mori K, et al. Safety and efficacy of long-term ripasudil 0.4% instillation for the reduction of intraocular pressure in Japanese open-angle glaucoma patients. J Ocul Pharmacol Ther. 2020;36(4):229–233. doi:10.1089/jop.2019.0125
  • Serle JB, Katz LJ, McLaurin E, et al. Two phase 3 clinical trials comparing the safety and efficacy of netarsudil to timolol in patients with elevated intraocular pressure: rho kinase elevated IOP treatment trial 1 and 2 (ROCKET-1 and ROCKET-2). Am J Ophthalmol. 2018;186:116–127. doi:10.1016/j.ajo.2017.11.019
  • Khouri AS, Serle JB, Bacharach J, et al. Once-daily netarsudil versus twice-daily timolol in patients with elevated intraocular pressure: the randomized phase 3 ROCKET-4 study. Am J Ophthalmol. 2019;204:97–104. doi:10.1016/j.ajo.2019.03.002
  • Bhargava M, Sen S, Bhambhani V, Paul R, Dutta C. Reticular epithelial corneal edema as a novel side-effect of rho kinase inhibitors: an Indian scenario. Indian J Ophthalmol. 2022;70(4):1163. doi:10.4103/ijo.IJO_2865_21
  • Wisely CE, Liu KC, Gupta D, Carlson AN, Asrani SG, Kim T. Reticular bullous epithelial edema in corneas treated with netarsudil: a case series. Am J Ophthalmol. 2020;217:20–26. doi:10.1016/j.ajo.2020.04.002
  • Soh YQ, Peh G, George BL, et al. Predicative factors for corneal endothelial cell migration. Invest Ophthalmol Vis Sci. 2016;57(2):338–348. doi:10.1167/iovs.15-18300
  • Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther. 2022;22(2):104–131. doi:10.2174/1566523221666210423084233
  • Mehta JS, Kocaba V, Soh YQ. The future of keratoplasty: cell-based therapy, regenerative medicine, bioengineering keratoplasty, gene therapy. Curr Opin Ophthalmol. 2019;30(4):286–291. doi:10.1097/ICU.0000000000000573
  • Zarouchlioti C, Sanchez-Pintado B, Hafford Tear NJ, et al. Antisense therapy for a common corneal dystrophy ameliorates TCF4 repeat expansion-mediated toxicity. Am J Hum Genet. 2018;102(4):528–539. doi:10.1016/j.ajhg.2018.02.010
  • Hu J, Rong Z, Gong X, et al. Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs’ dystrophy. Hum Mol Genet. 2018;27(6):1015–1026. doi:10.1093/hmg/ddy018
  • Pinto BS, Saxena T, Oliveira R, et al. Impeding transcription of expanded microsatellite repeats by deactivated cas9. Mol Cell. 2017;68(3):479–490.e5. doi:10.1016/j.molcel.2017.09.033
  • Rong Z, Gong X, Hulleman JD, Corey DR, Mootha VV. Trinucleotide repeat-targeting dCas9 as a therapeutic strategy for fuchs’ endothelial corneal dystrophy. Transl Vis Sci Technol. 2020;9(9):47. doi:10.1167/tvst.9.9.47
  • Peh GSL, Ang HP, Lwin CN, et al. Regulatory compliant tissue-engineered human corneal endothelial grafts restore corneal function of rabbits with bullous keratopathy. Sci Rep. 2017;7(1):14149. doi:10.1038/s41598-017-14723-z
  • Koizumi N, Sakamoto Y, Okumura N, et al. Cultivated corneal endothelial cell sheet transplantation in a primate model. Invest Opthalmol Vis Sci. 2007;48(10):4519. doi:10.1167/iovs.07-0567