193
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Synthesis and Application of a Near-Infrared Light-Emitting Fluorescent Probe for Specific Imaging of Cancer Cells with High Sensitivity and Selectivity

, , , , , , , , & ORCID Icon show all
Pages 29-41 | Received 06 Oct 2023, Accepted 21 Dec 2023, Published online: 09 Jan 2024

References

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. doi:10.3322/caac.21708
  • Tyson DM, Chavez MN, Lake P, et al. Perceptions of prescription opioid medication within the context of cancer survivorship and the opioid epidemic. J Cancer Surviv. 2021;15(4):585–596. doi:10.1007/s11764-020-00952-1
  • Schiffman JD, Fisher PG, Gibbs P. Early detection of cancer: past, present, and future. Am Soc Clin Oncol Educ Book. 2015;57–65. doi:10.14694/EdBook_AM.2015.35.57
  • Zhang Y, Wang J. Targeting uptake transporters for cancer imaging and treatment. Acta Pharm Sin B. 2020;10(1):79–90. doi:10.1016/j.apsb.2019.12.005
  • Pierce MC, Javier DJ, Richards-Kortum R. Optical contrast agents and imaging systems for detection and diagnosis of cancer. Int, J, Cancer. 2008;123(9):1979–1990. doi:10.1002/ijc.23858
  • Zhu N, Guo X, Pang S, et al. Mitochondria-immobilized unimolecular fluorescent probe for multiplexing imaging of living cancer cells. Anal Chem. 2020;92(16):11103–11110. doi:10.1021/acs.analchem.0c01046
  • Cui C, Chakraborty K, Tang XA, et al. A lysosome-targeted DNA nanodevice selectively targets macrophages to attenuate tumours. Nat Nanotechnol. 2021;16(12):1394–1402. doi:10.1038/s41565-021-00988-z
  • X-y H, J-j L, Yang Z-W, Zhang J, Wang H-S. Fluorescent intracellular imaging of reactive oxygen species and pH levels moderated by a hydrogenase mimic in living cells. J Pharm Anal. 2022;12(5):801–807. doi:10.1016/j.jpha.2022.05.007
  • Li T, Yang J, Ali Z, et al. Synthesis of aptamer-functionalized Ag nanoclusters for MCF-7 breast cancer cells imaging. Sci China Chem. 2017;60:370–376. doi:10.1007/s11426-016-0159-2
  • Demir B, Lemberger MM, Panagiotopoulou M, et al. Tracking hyaluronan: molecularly imprinted polymer coated carbon dots for cancer cell targeting and imaging. ACS Appl Mater Interfaces. 2018;10(4):3305–3313. doi:10.1021/acsami.7b16225
  • Baghban R, Afarid M, Soleymani J, et al. Were magnetic materials useful in cancer therapy? Biomed Pharmacother. 2021;144:112321. doi:10.1016/j.biopha.2021.112321
  • Joshy KS, Augustine R, Mayeen A, et al. NiFe 2 O 4/poly (ethylene glycol)/lipid–polymer hybrid nanoparticles for anti-cancer drug delivery. New J Chem. 2020;44(42):18162–18172. doi:10.1039/d0nj01163k
  • Siddique S, Chow JCL. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials. 2020;10(9):1700. doi:10.3390/nano10091700
  • Gao Q, Zhang J, Gao J, et al. Gold Nanoparticles in Cancer Theranostics. Front Bioeng Biotechnol. 2021;9:647905. doi:10.3389/fbioe.2021.647905
  • Woo Y, Chaurasiya S, O’Leary M, et al. Fluorescent imaging for cancer therapy and cancer gene therapy. Mol Ther Oncolytics. 2021;23:231–238. doi:10.1016/j.omto.2021.06.007
  • Lamberts LE, Koch M, de Jong JS, et al. Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a Phase I Feasibility Study. Clin Cancer Res. 2017;23(11):2730–2741. doi:10.1158/1078-0432.CCR-16-0437
  • Nozaki S, Nakatani Y, Mawatari A, et al. 18F-FIMP: a LAT1-specific PET probe for discrimination between tumor tissue and inflammation. Sci Rep. 2019;9(1):15718. doi:10.1038/s41598-019-52270-x
  • Jiao J, Zhang J, Yang F, et al. Quicker, deeper and stronger imaging: a review of tumor-targeted, near-infrared fluorescent dyes for fluorescence guided surgery in the preclinical and clinical stages. Eur J Pharm Biopharm. 2020;152:123–143. doi:10.1016/j.ejpb.2020.05.002
  • Zhu S, Tian R, Antaris AL, et al. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv Mater. 2019;31(24):e1900321. doi:10.1002/adma.201900321
  • Zhang E, Luo S, Tan X, et al. Mechanistic study of IR-780 dye as a potential tumor targeting and drug delivery agent. Biomaterials. 2014;35(2):771–778. doi:10.1016/j.biomaterials.2013.10.033
  • Luo S, Zhang E, Su Y, et al. A review of NIR dyes in cancer targeting and imaging. Biomaterials. 2011;32(29):7127–7138. doi:10.1016/j.biomaterials.2011.06.024
  • Das RS, Mukherjee A, Kar S, et al. Construction of red fluorescent dual targeting mechanically interlocked molecules for live cancer cell specific lysosomal staining and multicolor cellular imaging. Org Lett. 2022;24(32):5907–5912. doi:10.1021/acs.orglett.2c02114
  • Wang W, Ma Z, Zhu S, et al. Molecular cancer imaging in the second near-infrared window using a renal-excreted NIR-II fluorophore-peptide probe. Adv Mater. 2018;30(22):e1800106. doi:10.1002/adma.201800106
  • Xing Q, Wang X, Yan X, et al. Multifunctional butterfly-shaped cyanine dyes: aggregation-induced emission, high-contrast mechanochromic luminescence, mitochondrial-specific staining and tumor imaging. Dyes Pigm. 2021;88:109232. doi:10.1016/j.dyepig.2021.109232
  • Kanai Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and therapeutics. Pharmacol Ther. 2022;230:107964. doi:10.1016/j.pharmthera.2021.107964
  • Holley RW. A unifying hypothesis concerning the nature of malignant growth. Proc Natl Acad Sci U S A. 1972;69(10):2840–2841. doi:10.1073/pnas.69.10.2840
  • Yan R, Zhao X, Lei J, Zhou Q. Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex. Nature. 2019;568(7750):127–130. doi:10.1038/s41586-019-1011-z
  • Scalise M, Galluccio M, Console L, Pochini L, Indiveri C. The human SLC7A5 (LAT1): the intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front Chem. 2018;6:243. doi:10.3389/fchem.2018.00243
  • Bhutia YD, Babu E, Ramachandran S, Ganapathy V. Amino acid transporters in cancer and their relevance to “Glutamine Addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res. 2015;75(9):1782–1788. doi:10.1158/0008-5472.Can-14-3745
  • Okano N, Naruge D, Kawai K, et al. First-in-human phase I study of JPH203, an L-type amino acid transporter 1 inhibitor, in patients with advanced solid tumors. Invest New Drugs. 2020;38(5):1495–1506. doi:10.1007/s10637-020-00924-3
  • Häfliger P, Charles RP. The L-type amino acid transporter LAT1-an emerging target in cancer. Int J Mol Sci. 2019;20(10):2428. doi:10.3390/ijms20102428
  • Shindo H, Harada-Shoji N, Ebata A, et al. Targeting amino acid metabolic reprogramming via L-type amino acid transporter 1 (LAT1) for endocrine-resistant breast cancer. Cancers. 2021;13(17):4375. doi:10.3390/cancers13174375
  • Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol. 2005;15(4):254–266. doi:10.1016/j.semcancer.2005.04.005
  • Das RS, Maiti D, Kar S, et al. Design of Water–soluble rotaxane-capped superparamagnetic, ultrasmall Fe3O4 nanoparticles for targeted NIR fluorescence imaging in combination with magnetic resonance imaging. J Am Chem Soc. 2023;145(37):20451–20461. doi:10.1021/jacs.3c06232
  • David CI, Prabakaran G, Sundaram K, et al. Rhodanine-based fluorometric sequential monitoring of silver (I) and iodide ions: experiment, DFT calculation and multifarious applications. J Hazard Mater. 2021:419. doi:10.1016/j.jhazmat.2021.126449
  • Zheng J, Zhou C, Yu M, et al. Different sized luminescent gold nanoparticles. Nanoscale. 2012;4(14):4073–4083. doi:10.1039/c2nr31192e
  • Deng HH, Zhang LN, He SB, et al. Methionine-directed fabrication of gold nanoclusters with yellow fluorescent emission for Cu(2+) sensing. Biosens Bioelectron. 2015;65:397–403. doi:10.1016/j.bios.2014.10.071
  • Maruyama T, Fujimoto Y, Maekawa T. Synthesis of gold nanoparticles using various amino acids. J Colloid Interface Sci. 2015;447:254–257. doi:10.1016/j.jcis.2014.12.046
  • Peng Y, Wang M, Wu X, et al. Methionine-capped gold nanoclusters as a fluorescence-enhanced probe for Cadmium(II) sensing. Sensors. 2018;18(2):658. doi:10.3390/s18020658
  • Sang F, Zhang X, Shen F. Fluorescent methionine-capped gold nanoclusters for ultra-sensitive determination of copper(II) and cobalt(II), and their use in a test strip. Mikrochim Acta. 2019;186(6):373. doi:10.1007/s00604-019-3428-3
  • Bian RX, Wu XT, Chai F, et al. Facile preparation of fluorescent Au nanoclusters-based test papers for recyclable detection of Hg2+ and Pb2+. Sens Actuators B Chem. 2017;241:592–600. doi:10.1016/j.snb.2016.10.120
  • Zheng Y, Wu J, Jiang H, et al. Gold nanoclusters for theranostic applications. Coord Chem R. 2021;431:213689. doi:10.1016/j.ccr.2020.213689
  • Li L, Di X, Wu M, et al. Targeting tumor highly-expressed LAT1 transporter with amino acid-modified nanoparticles: toward a novel active targeting strategy in breast cancer therapy. Nanomedicine. 2017;13(3):987–998. doi:10.1016/j.nano.2016.11.012
  • Purohit R, Singh S. Fluorescent gold nanoclusters for efficient cancer cell targeting. Int J Nanomed. 2018;13(T–NANO 2014 Abstracts):15–17. doi:10.2147/IJN.S125003