199
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Synthesis of a New Series of Anthraquinone-Linked Cyclopentanone Derivatives: Investigating the Antioxidant, Antibacterial, Cytotoxic and Tyrosinase Inhibitory Activities of the Mushroom Tyrosinase Enzyme Using Molecular Docking

, ORCID Icon, , , ORCID Icon, , ORCID Icon & show all
Pages 597-612 | Received 06 Oct 2023, Accepted 13 Feb 2024, Published online: 26 Feb 2024

References

  • Demir Y. Naphthoquinones, benzoquinones, and anthraquinones: molecular docking, ADME and inhibition studies on human serum paraoxonase‐1 associated with cardiovascular diseases. Drug Dev Res. 2022;81(5):628–636. doi:10.1002/ddr.21667
  • Demir Y, Özaslan MS, Duran HE, Küfrevioğlu Öİ, Beydemir Ş. Inhibition effects of quinones on aldose reductase: antidiabetic properties. Environ Toxicol Pharmacol. 2019;70:103195. doi:10.1016/j.etap.2019.103195
  • Owens J, Voskian S, Murray AT, et al. In-situ production of hydrogen peroxide via electrochemical reduction of anthraquinone electrodes. In 2019 AIChE Annual Meeting; 2019;11:AIChE.
  • Demir Y, Ceylan H, Türkeş C, Beydemir Ş. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J Biomol Struct. 2022;40:12008–12021. doi:10.1080/07391102.2021.1967195
  • Jiang D, Wang F, Lan B, et al. Efficient treatment of anthraquinone dye wastewater by adsorption using sunflower torus-like magnesium hydroxide microspheres. Korean J Chem Eng. 2020;37:434–447. doi:10.1007/s11814-019-0455-z
  • Jin J, Luo Y, Zhou C, et al. Synthesis of indeno[1,2-c]furans via a Pd-catalyzed bicyclization of 2-alkynyliodobenzene and propargylic alcohol. J Org Chem. 2012;77(24):11368–11371. doi:10.1021/jo302223y
  • Prabhakar KR, Veerapur VP, Bansal P, et al. Identification and evaluation of antioxidant, analgesic/anti-inflammatory activity of the most active ninhydrin-phenol adducts synthesized. Bioorg Med Chem. 2006;14:7113–7120. doi:10.1016/j.bmc.2006.06.068
  • Türkeş C, Demir Y, Beydemir Ş. In vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as ar and sdh inhibitors. Chemistry Select. 2022;7:202204050. doi:10.1002/slct.202204050
  • Liu J, Wu F, Chen C. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents. Bioorg Med Chem. 2015;25(22):5142–5146. doi:10.1016/j.bmcl.2015.10.004
  • Selvaraj K, Daoud A, Alarifi S, Idhayadhulla A. Tel-Cu-NPs catalyst: synthesis of naphtho [2, 3-g] phthalazine derivatives as potential inhibiters of tyrosinase enzymes and their investigation in kinetic, molecular docking, and cytotoxicity studies. Catalysts. 2020;10:1442. doi:10.3390/catal10121442
  • Malik MS, Alsantali RI, Jassas RS, et al. Journey of anthraquinones as anticancer agents – a systematic review of recent literature. RSC Adv. 2021;11(57):35806–35827. doi:10.1039/D1RA05686G
  • Bhatarrai G, Choi JW, Seong SH, Nam TJ, Jung HA, Choi JSA-I. anti-glycation, anti-tyrosinase and CDK4 inhibitory activities of alaternin (= 7-hydroxyemodin). Nat Prod Sci. 2021;27:28–35. doi:10.20307/nps.2021.27.1.28
  • Masi M, Evidente A. Fungal bioactive anthraquinones and analogues. Toxins. 2020;12:714. doi:10.3390/toxins12110714
  • Qun T, Zhou T, Hao J, et al. Antibacterial activities of anthraquinones: structure–activity relationships and action mechanisms. RSC Med Chem. 2023;14:1446–1471. doi:10.1039/D3MD00116D
  • Stasevych M, Zvarych V, Novikov VS. A computational approach in the search of new biologically active 9, 10-anthraquinone derivatives. IDDM. 2020;3:178–185.
  • Li Y, Jiang JG. Health functions and structure–activity relationships of natural anthraquinones from plants. Food & Function. 2018;9:6063–6080. doi:10.1039/C8FO01569D
  • Bhasin AK, Chauhan P, Chaudhary S. A novel sulfur-incorporated naphthoquinone as a selective “turn-on” fluorescence chemical sensor for rapid detection of Ba2+ ion in semi-aqueous medium. Sensors and Actuators B. 2019;294:116–122. doi:10.1016/j.snb.2019.04.098
  • Kumar P, Ghosh A, Jose DA. A simple colorimetric sensor for the detection of moisture in organic solvents and building materials: applications in rewritable paper and fingerprint imaging. Analyst. 2019;144:594–601. doi:10.1039/C8AN01042K
  • Bayrak S, Öztürk C, Demir Y, Alım Z, Küfrevioglu Öİ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein Pept. 2020;27:187–192. doi:10.2174/0929866526666191002142301
  • Saini Y, Khajuria R, Rana LK, et al. Unprecedented reaction of ninhydrin with ethyl cyanoacetate and diethyl malonate on ultrasonic irradiation. Tetrahedron. 2016;72:257–263. doi:10.1016/j.tet.2015.11.022
  • Ahmed N. Chapter 8 - synthetic advances in the indane natural product scaffolds as drug candidates: a review. Stud Nat Prod Chem. 2016;51:383–434.
  • He G, Wu C, Zhou J, et al. A Method for Synthesis of 3-Hydroxy-1-indanones via Cu-Catalyzed Intramolecular Annulation Reactions. J Org Chem. 2018;83:13356–13362. doi:10.1021/acs.joc.8b02149
  • Beydemir Ş, Demir Y. Antiepileptic drugs: impacts on human serum paraoxonase‐1. J Biochem Mol Toxicol. 2017;31:e21889. doi:10.1002/jbt.21889
  • Obaid RJ, Mughal EU, Naeem N, et al. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: a systematic review. RSC Adv. 2021;11:22159–22198. doi:10.1039/D1RA03196A
  • Palabıyık E, Sulumer AN, Uguz H, et al. Assessment of hypolipidemic and anti‐inflammatory properties of walnut (Juglansregia) seed coat extract and modulates some metabolic enzymes activity in triton WR‐1339‐induced hyperlipidemia in rat kidney, liver, and heart. J Mol Recognit. 2023;36:e3004. doi:10.1002/jmr.3004
  • Özaslan MS, Sağlamtaş R, Demir Y, Genç Y, Saraçoğlu İ, Gülçin İ. Isolation of some phenolic compounds from Plantagosubulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity. Chem Biodivers. 2022;19:e202200280. doi:10.1002/cbdv.202200280
  • Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, et al. Metabolites from macroalgae and its applications in the cosmetic industry: a circular economy approach. Resources. 2020;9:101. doi:10.3390/resources9090101
  • Yaşar Ü, Gönül İ, Türkeş C, Demir Y, Beydemir Ş. Transition‐metal complexes of bidentate Schiff‐base ligands: in vitro and in silico evaluation as non‐classical carbonic anhydrase and potential acetylcholinesterase inhibitors. ChemistrySelect. 2021;6:7278–7284. doi:10.1002/slct.202102082
  • Spraggon G, Koesema E, Scarselli M, et al. Supramolecular organization of the repetitive backbone unit of the Streptococcus pneumoniaepilus. PLoS One. 2010;5:10919. doi:10.1371/journal.pone.0010919
  • Jiang L, Ma Y, Chen Y, et al. Multi-target antibacterial mechanism of ruthenium polypyridine complexes with anthraquinone groups against Staphylococcus aureus. RSC Med Chem. 2023;14:700–709. doi:10.1039/D2MD00430E
  • Alhadrami HA, Abdulaal WH, Hassan HM, Alhakamy NA, Sayed AM. In silico-based discovery of natural anthraquinones with potential against multidrug-resistant E. coli. Pharm. 2022;15:86. doi:10.3390/ph15010086
  • Vedhagiri K, Manilal A, Valliyammai T, et al. Antimicrobial potential of a marine seaweedAsparagopsis taxiformis againstLeptospira javanica isolates of rodent reservoirs. Ann Microbiol. 2009;59:431–437. doi:10.1007/BF03175127
  • Zeng HJ, Sun DQ, Chu SH, Zhang JJ, Hu GZ, Yang R. Inhibitory effects of four anthraquinones on tyrosinase activity: insight from spectroscopic analysis and molecular docking. Int J Biol Macromol. 2020;160:153–163. doi:10.1016/j.ijbiomac.2020.05.193
  • Muddathir AM, Yamauchi K, Batubara I, Mohieldin EAM, Mitsunaga T. Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. S Afr J Bot. 2017;109:9–15. doi:10.1016/j.sajb.2016.12.013
  • Cui HX, Duan FF, Jia SS, Cheng FR, Yuan K. Antioxidant and tyrosinase inhibitory activities of seed oils from torreyagrandis fort. Ex Lindl. Biomed Res Int. 2018;2018. doi:10.1155/2018/5314320
  • Xia L, Idhayadhulla A, Lee YR, Wee YJ, Kim SH. Anti-tyrosinase, antioxidant, and antibacterial activities of novel 5-hydroxy-4-acetyl-2, 3-dihydronaphtho [1, 2-b] furans. Eur J Med Chem. 2014;86:605–612. doi:10.1016/j.ejmech.2014.09.025
  • Mostafa AA, SathishKumar C, Al-Askar AA, Sayed SR, SurendraKumar R, Idhayadhulla A. Synthesis of novel benzopyran-connected pyrimidine and pyrazole derivatives via a green method using Cu (II)-tyrosinase enzyme catalyst as potential larvicidal, antifeedant activities. RSC Adv. 2019;9:25533–25543. doi:10.1039/C9RA04496E
  • Mullaivendhan J, Ahamed A, Raman G, Radhakrishnan S, Akbar I. Synthesis and antibacterial activity of pyrano [3, 2-g] chromene-4, 6-dione derivatives and their molecular docking and DFT calculation studies. Results Chem. 2023;6:101175. doi:10.1016/j.rechem.2023.101175
  • Idhayadhulla A, Manilal A, Ahamed A, Alarifi S, Raman G. Potato Peels Mediated Synthesis of Cu (II)-nanoparticles from Tyrosinase Reacted with bis-(N-aminoethylethanolamine)(Tyr-Cu (II)-AEEA NPs) and Their Cytotoxicity against Michigan Cancer Foundation-7 Breast Cancer Cell Line. Mol. 2021;26:6665. doi:10.3390/molecules26216665
  • Mullaivendhan J, Akbar I, Gatasheh MK, et al. Cu (II)-catalyzed: synthesis of imidazole derivatives and evaluating their larvicidal, antimicrobial activities with DFT and molecular docking studies. BMC Chem. 2023;17:155. doi:10.1186/s13065-023-01067-1
  • Abuthakir MHS, Sharmila V, Jeyam M. Screening Balanitesaegyptiaca for inhibitors against putative drug targets in Microsporumgypseum–Subtractive proteome, docking and simulation approach. Infect Genet Evol. 2021;90:104755. doi:10.1016/j.meegid.2021.104755
  • Mani A, Ahamed A, Ali D, et al. Dopamine-mediated vanillin multicomponent derivative synthesis via grindstone method: application of antioxidant, anti-tyrosinase, and cytotoxic activities. Drug Des DevelTher. 2021;15:787–802. doi:10.2147/DDDT.S288389
  • Rezaei M, Mohammadi HT, Mahdavi A, Shourian M, Ghafouri H. Evaluation of thiazolidinone derivatives as a new class of mushroom tyrosinase inhibitors. Int J Biol Macromol. 2018;108:205–213. doi:10.1016/j.ijbiomac.2017.11.147
  • Adeniji OO, Ojemaye MO, Okoh AI. Antibacterial activity of metallic nanoparticles against multidrug-resistant pathogens isolated from environmental samples: nanoparticles/antibiotic combination therapy and cytotoxicity study. ACS Appl Bio Mater. 2022;5:4814–4826.
  • Salah DB, Chakchouk-Mtibaa A, Mellouli L, et al. Novel 3-phenyl-1-(alkylphenyl)-9-oxa-4-azaphenanthren-10-ones as inhibitors of some enzymes: synthesis, characterization, biological evaluation and molecular docking studies. J Biomol Struct. 2022;1–17. doi:10.1080/07391102.2022.2114938
  • Halawa AH, Elgammal WE, Hassan SM, et al. Synthesis, anticancer evaluation and molecular docking studies of new heterocycles linked to sulfonamide moiety as novel human topoisomerase types I and II poisons. Bioorg Chem. 2020;98:103725.
  • Velmurugan L, Ahamed A, Idhayadhulla A, Alarifi S, Gurusamy R. Antioxidant, antibacterial, and cytotoxic activities of Cimemoxin derivatives and their molecular docking studies. J King Saud Univ Sci. 2023;103011. doi:10.1016/j.jksus.2023.103011
  • Qi Y, Liu Y, Zhang B, et al. Comparative antibacterial analysis of the anthraquinone compounds based on the AIM theory, molecular docking, and dynamics simulation analysis. J Mol Model. 2023;29:16. doi:10.1007/s00894-022-05406-2
  • Cardoso R, Valente R, Souza da Costa CH, et al. Analysis of kojic acid derivatives as competitive inhibitors of tyrosinase: a molecular modeling approach. Mole. 2021;26:2875. doi:10.3390/molecules26102875
  • Feng S, Wang W. Bioactivities and structure–activity relationships of natural tetrahydroanthraquinone compounds: a review. Front Pharmacol. 2020;11:799. doi:10.3389/fphar.2020.00799