55
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Citric Acid Controls the Activity of YopH Bacterial Tyrosine Phosphatase

, ORCID Icon, &
Pages 1165-1174 | Received 05 Dec 2023, Accepted 27 Feb 2024, Published online: 11 Apr 2024

References

  • Hawkins SG. ”Antimicrobial Activity of Cinnamic Acid, Citric Acid, Cinnamaldehyde, and Levulinic Acid Against Foodborne Pathogens”. Chancellor’s Honors Program Projects; 2014.
  • Ryan EM, Duryee MJ, Hollins A, et al. Antioxidant properties of citric acid interfere with the uricase-based measurement of circulating uric acid. J Pharmac Biomed Anal. 2019;164:460–466. doi:10.1016/j.jpba.2018.11.011
  • Ciriminna R, Meneguzzo F, Delisi R, Pagliaro M. Citric acid: emerging applications of key biotechnology industrial product. Chem Cent J. 2017;11:22. doi:10.1186/s13065-017-0251-y
  • Koromyslova AD, White PA, Hansman GS. Treatment of norovirus particles with citrate. Virology. 2015;485:199–204. doi:10.1016/j.virol.2015.07.009
  • Eliuz EAE. Antimicrobial activity of citric acid against Escherichia coli, Staphylococcus aureus and Candida albicans as a sanitizer agent. J Fore Sci. 2020;8:295–301.
  • Bielecki J. Emerging food pathogens and bacterial toxins. Acta Microbiol Pol. 2003;52:17–22.
  • Wu HJ, Wang AH, Jennings MP. Discovery of virulence factors of pathogenic bacteria. Curr Opin Chem Biol. 2008;12(1):93–101. doi:10.1016/j.cbpa.2008.01.023
  • Black DS, Bliska JB. Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J. 1997;16(10):2730–2744. doi:10.1093/emboj/16.10.2730
  • Persson C, Carballeira N, Wolf-Watz H, Fällman M. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 1997;16(9):2307–2318. doi:10.1093/emboj/16.9.2307
  • Andersson K, Carballeira N, Magnusson KE, et al. YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Mol Microbiol. 1996;20(5):1057–1069. doi:10.1111/j.1365-2958.1996.tb02546.x
  • Ernst JD. Bacterial inhibition of phagocytosis. Cell Microbiol. 2000;2(5):379–386. doi:10.1046/j.1462-5822.2000.00075.x
  • Aepfelbacher M, Zumbihl R, Ruckdeschel K, Jacobi CA, Barz C, Heesemann J. The tranquilizing injection of Yersinia proteins: a pathogen’s strategy to resist host defense. Biol Chem. 1999;380(7–8):795–802. doi:10.1515/BC.1999.099
  • Green SP, Hartland EL, Robins-Browne RM, Phillips WA. Role of YopH in the suppression of tyrosine phosphorylation and respiratory burst activity in murine macrophages infected with Yersinia enterocolitica. J Leukoc Biol. 1995;57(6):972–977. doi:10.1002/jlb.57.6.972
  • Yao T, Mecsas J, Healy JI, Falkow S, Chien Y. Suppression of T and B lymphocyte activation by a Yersinia pseudotuberculosis virulence factor, yopH. J Exp Med. 1999;190(9):1343–1350. doi:10.1084/jem.190.9.1343
  • de la Puerta ML, Trinidad AG, Del Carmen Rodríguez M, et al. Characterization of new substrates targeted by Yersinia tyrosine phosphatase YopH. PLoS One. 2009;4(2):e4431. doi:10.1371/journal.pone.0004431
  • Kuban-Jankowska A, Sahu KK, Niedzialkowski P, et al. Redox process is crucial for inhibitory properties of aurintricarboxylic acid against activity of YopH: virulence factor of Yersinia pestis. Oncotarget. 2015;6(21):18364–18373. doi:10.18632/oncotarget.4625
  • Kuban-Jankowska A, Kostrzewa T, Gorska-Ponikowska M. bacterial protein tyrosine phosphatases as possible targets for antimicrobial therapies in response to antibiotic resistance. Antioxidants. 2022;11(12):2397. doi:10.3390/antiox11122397
  • Kim SE, Bahta M, Lountos GT, Ulrich RG, Burke TR, Waugh DS. Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 7):639–645. doi:10.1107/S0907444911018610
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. doi:10.1002/jcc.21334
  • Guan KL, Dixon JE. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science. 1990;249(4968):553–556. doi:10.1126/science.2166336
  • Bliska JB, Guan KL, Dixon JE, Falkow S. Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc Natl Acad Sci U S A. 1991;88(4):1187–1191. doi:10.1073/pnas.88.4.1187
  • Stuckey JA, Schubert HL, Fauman EB, Zhang ZY, Dixon JE, Saper MA. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 A and the complex with tungstate. Nature. 1994;370(6490):571–575. doi:10.1038/370571a0
  • Montagna LG, Ivanov MI, Bliska JB. Identification of residues in the N-terminal domain of the Yersinia tyrosine phosphatase that are critical for substrate recognition. J Biol Chem. 2001;276(7):5005–5011. doi:10.1074/jbc.M009045200
  • Evdokimov AG, Tropea JE, Routzahn KM, Copeland TD, Waugh DS. Structure of the N-terminal domain of Yersinia pestis YopH at 2.0 A resolution. Acta Crystallogr D Biol Crystallogr. 2001;57(Pt 6):793–799. doi:10.1107/s0907444901004875
  • Hamid N, Gustavsson A, Andersson K, et al. YopH dephosphorylates cas and fyn-binding protein in macrophages. Microb Pathog. 1999;27(4):231–242. doi:10.1006/mpat.1999.0301
  • Black DS, Marie-Cardine A, Schraven B, Bliska JB. The Yersinia tyrosine phosphatase YopH targets a novel adhesion-regulated signalling complex in macrophages. Cell Microbiol. 2000;2(5):401–414. doi:10.1046/j.1462-5822.2000.00061.x
  • Alonso A, Bottini N, Bruckner S, et al. Lck dephosphorylation at Tyr-394 and inhibition of T cell antigen receptor signaling by Yersinia phosphatase YopH. J Biol Chem. 2004;279(6):4922–4928. doi:10.1074/jbc.M308978200
  • Gerke C, Falkow S, Chien YH. The adaptor molecules LAT and SLP-76 are specifically targeted by Yersinia to inhibit T cell activation. J Exp Med. 2005;201(3):361–371. doi:10.1084/jem.20041120
  • Stratford M, Anslow PA. Evidence that sorbic acid does not inhibit yeast as a classic ‘weak acid preservative’. Lett Appl Microbiol. 1998;27(4):203–206. doi:10.1046/j.1472-765x.1998.00424.x
  • Bjarnsholt T, Alhede M, Pø J, et al. Antibiofilm properties of acetic acid. Adv Wound Care. 2015;4(7):363–372. doi:10.1089/wound.2014.0554
  • Brul S, Coote P. Preservative agents in foods. Mode of action and microbial resistance mechanisms. Int J Food Microbiol. 1999;50(1–2):1–17. doi:10.1016/s0168-1605(99)00072-0
  • Souza JGS, Cordeiro JM, Lima CV, Barão VAR. Citric acid reduces oral biofilm and influences the electrochemical behavior of titanium: an in situ and in vitro study. J Periodontol. 2019;90(2):149–158. doi:10.1002/JPER.18-0178
  • Kundukad B, Udayakumar G, Grela E, et al. Weak acids as an alternative anti-microbial therapy. Biofilm. 2020;2:100019. doi:10.1016/j.bioflm.2020.100019
  • Nural Y, Gemili M, Ulger M, Sari H, De Coen LM, Sahin E. Synthesis, antimicrobial activity and acid dissociation constants of methyl 5,5-diphenyl-1-(thiazol-2-yl)pyrrolidine-2-carboxylate derivatives. Bioorg Med Chem Lett. 2018;28(5):942–946. doi:10.1016/j.bmcl.2018.01.045