150
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Exploration of the in vitro Antiviral Effects and the Active Components of Changyanning Tablets Against Enterovirus 71

, ORCID Icon, , , , , & show all
Pages 651-665 | Received 13 Nov 2023, Accepted 15 Feb 2024, Published online: 01 Mar 2024

References

  • Sun J, Li Y, Yang Z, Fang Q, Chen B. Effect of enterovirus 71 vaccination on the epidemiological characteristics and etiology in hospitalized children with hand-foot-and-mouth disease: a retrospective study from a tertiary children’s hospital. Medicine. 2022;101(37):e30356. doi:10.1097/MD.0000000000030356
  • Nguyet LA, Thanh TT, Nhan LNT, et al. Neutralizing antibodies against enteroviruses in patients with hand, foot and mouth disease. Emerg Infect Dis. 2020;26(2):298–306. doi:10.3201/eid2602.190721
  • Liang ZL, Mao QY, Wang YP, et al. Progress on the research and development of inactivated EV71 whole-virus vaccines. Hum Vaccin Immunother. 2013;9(8):1701–1705. doi:10.4161/hv.24949
  • Saguil A, Kane S, Lauters R, Mercado M. Hand-foot-and-mouth disease: rapid evidence review. Am Family Phys. 2019;100(7):408–414.
  • Zhang W, Huang Z, Huang M, Zeng J. Predicting severe enterovirus 71-infected hand, foot, and mouth disease: cytokines and Chemokines. Mediators Inflamm. 2020;2020:9273241. doi:10.1155/2020/9273241
  • Esposito S, Principi N. Hand, foot and mouth disease: current knowledge on clinical manifestations, epidemiology, aetiology and prevention. Eur J Clin Microbiol Infect Dis. 2018;37(3):391–398. doi:10.1007/s10096-018-3206-x
  • Mao QY, Wang Y, Bian L, Xu M, Liang Z. EV71 vaccine, a new tool to control outbreaks of hand, foot and mouth disease (HFMD). Expert Rev Vaccines. 2016;15(5):599–606. doi:10.1586/14760584.2016.1138862
  • Du Z, Huang Y, Bloom MS, et al. Assessing the vaccine effectiveness for hand, foot, and mouth disease in Guangzhou, China: a time-series analysis. Hum Vaccin Immunother. 2021;17(1):217–223. doi:10.1080/21645515.2020.1763076
  • Li J, Yin X, Lin A, et al. EV71 vaccination impact on the incidence of encephalitis in patients with hand, foot and mouth disease. Hum Vaccines Immunother. 2021;17(7):2097–2100. doi:10.1080/21645515.2020.1851129
  • Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis. 2010;10(11):778–790. doi:10.1016/S1473-3099(10)70194-8
  • Huang K, Zhang P, Zhang Z, et al. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: efficacies and mechanisms. Pharmacol Ther. 2021;225:107843. doi:10.1016/j.pharmthera.2021.107843
  • Tang J, Zhang G, Xing J, Yu Y, Han T. Network meta-analysis of heat-clearing and detoxifying oral liquid of Chinese medicines in treatment of children’s hand-foot-mouth disease: a protocol for systematic review and meta-analysis. Medicine. 2022;101(5):e28778. doi:10.1097/MD.0000000000028778
  • Li XH, Li SJ, Xu Y, et al. Effect of integrated Chinese and Western medicine therapy on severe hand, foot and mouth disease: a prospective, randomized, controlled trial. Chin J Integr Med. 2017;23(12):887–892. doi:10.1007/s11655-016-2504-3
  • Yu W, Zhang Y, Kang C, et al. The pharmacological evidence of the Chang-yan-ning formula in the treatment of colitis. Front Pharmacol. 2022;13:1029088. doi:10.3389/fphar.2022.1029088
  • Hu X, Yang F. Analysis of the therapeutic effect of changyanning on intestinal flora in inflammatory bowel disease. Contrast Media Mol Imaging. 2022;2022:3757763. doi:10.1155/2022/3757763
  • Guo P, Wang Z, Lv X, et al. Changyanning regulates gut microbiota and metabolism to ameliorate intestinal injury induced by ETEC K88. Front Microbiol. 2023;14:1098818. doi:10.3389/fmicb.2023.1098818
  • Kang N, Gao H, He L, et al. Ginsenoside Rb1 is an immune-stimulatory agent with antiviral activity against enterovirus 71. J Ethnopharmacol. 2021;266:113401. doi:10.1016/j.jep.2020.113401
  • Yu Y, Yao C, Guo DA. Insight into chemical basis of traditional Chinese medicine based on the state-of-the-art techniques of liquid chromatography-mass spectrometry. Acta Pharm Sin B. 2021;11(6):1469–1492. doi:10.1016/j.apsb.2021.02.017
  • Chen K, Liu J, Ma Z, Duan F, Guo Z, Xiao H. Rapid identification of chemical constituents of Rhodiola crenulata using liquid chromatography-mass spectrometry pseudotargeted analysis. J Sep Sci. 2021;44(20):3747–3776. doi:10.1002/jssc.202100342
  • Yuan Z, Pan Y, Leng T, et al. Progress and prospects of research ideas and methods in the network pharmacology of Traditional Chinese Medicine. J Pharm Pharm Sci. 2022;25:218–226. doi:10.18433/jpps32911
  • Liu YY, Yu LH, Zhang J, Xie DJ, Zhang XX, Yu JM. Network pharmacology-based and molecular docking-based analysis of suanzaoren decoction for the treatment of parkinson’s disease with sleep disorder. Biomed Res Int. 2021;2021:1752570. doi:10.1155/2021/1752570
  • Liu J, Liu J, Tong X, et al. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of huai hua san against ulcerative colitis. Drug Des Devel Ther. 2021;15:3255–3276. doi:10.2147/DDDT.S319786
  • Crampon K, Giorkallos A, Deldossi M, Baud S, Steffenel LA. Machine-learning methods for ligand-protein molecular docking. Drug Discov Today. 2022;27(1):151–164. doi:10.1016/j.drudis.2021.09.007
  • Das DR, Kumar D, Kumar P, Dash BP. Molecular docking and its application in search of antisickling agent from Carica papaya. J Appl Biol Biotech. 2020;8(01):105–116. doi:10.7324/JABB.2020.80117
  • Bai G, Pan Y, Zhang Y, et al. Research advances of molecular docking and molecular dynamic simulation in recognizing interaction between muscle proteins and exogenous additives. Food Chem. 2023;429:136836. doi:10.1016/j.foodchem.2023.136836
  • Li X, Wei S, Niu S, et al. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput Biol Med. 2022;144:105389. doi:10.1016/j.compbiomed.2022.105389
  • Li L, Liu S, Wang B, et al. An updated review on developing small molecule kinase inhibitors using computer-aided drug design approaches. Int J Mol Sci. 2023;24(18):13953. doi:10.3390/ijms241813953
  • Agu PC, Afiukwa CA, Orji OU, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep. 2023;13(1):13398. doi:10.1038/s41598-023-40160-2
  • Wei W, Wan H, Peng X, Zhou H, Lu Y, He Y. Antiviral effects of Ma Huang Tang against H1N1 influenza virus infection in vitro and in an ICR pneumonia mouse model. Biomed Pharmacother. 2018;102:1161–1175. doi:10.1016/j.biopha.2018.03.161
  • Utsunomiya H, Ichinose M, Ikeda K, et al. Inhibition by caffeic acid of the influenza A virus multiplication in vitro. Int J Mol Med. 2014;34(4):1020–1024. doi:10.3892/ijmm.2014.1859
  • Tan L, Jin H, Liu Y, et al. Main chemical constituents of Changyanning Tablets based on HPLC-Q-TOF-MS/MS. Chin Traditional Herbal Drugs. 2020;51(16):4124–4132.
  • Abduljalil JM, Elfiky AA, Elgohary AM. Exploration of natural compounds against the human mpox virus DNA-dependent RNA polymerase in silico. J Infect Public Health. 2023;16(7):996–1003. doi:10.1016/j.jiph.2023.04.019
  • Wang S, Qiao J, Chen Y, Tian L, Sun X. Urolithin A inhibits enterovirus 71 replication and promotes autophagy and apoptosis of infected cells in vitro. Arch. Virol. 2022;167(10):1989–1997. doi:10.1007/s00705-022-05471-1
  • Wang C, Wang P, Chen X, Wang W, Jin Y. Saururus chinensis (Lour). Baill blocks enterovirus 71 infection by hijacking MEK1-ERK signaling pathway. Antiviral Res. 2015;119:47–56. doi:10.1016/j.antiviral.2015.04.009
  • Wu LL, Yang XB, Huang ZM, Liu HZ, Wu GX. In vivo and in vitro antiviral activity of hyperoside extracted from Abelmoschus manihot (L) medik. Acta Pharmacol Sin. 2007;28(3):404–409. doi:10.1111/j.1745-7254.2007.00510.x
  • Panchal R, Ghosh S, Mehla R, et al. Antiviral activity of rosmarinic acid against four serotypes of dengue virus. Curr Microbiol. 2022;79(7):203. doi:10.1007/s00284-022-02889-3
  • Shirasago Y, Inamori Y, Suzuki T, et al. Inhibition mechanisms of hepatitis C virus infection by caffeic acid and tannic acid. Biol Pharm Bull. 2019;42(5):770–777. doi:10.1248/bpb.b18-00970
  • Ding Y, Cao Z, Cao L, Ding G, Wang Z, Xiao W. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci Rep. 2017;10(7):45723. doi:10.1038/srep45723
  • Lin WY, Yu YJ, Jinn TR. Evaluation of the virucidal effects of rosmarinic acid against enterovirus 71 infection via in vitro and in vivo study. Virol J. 2019;16(1):94. doi:10.1186/s12985-019-1203-z
  • Shi W, Hou X, Li X, et al. Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells. Braz J Infect Dis. 2013;17(4):410–417. doi:10.1016/j.bjid.2012.11.009
  • Rivera-Torres J, San Jose E. Src tyrosine kinase inhibitors: new perspectives on their immune, antiviral, and senotherapeutic potential. Front Pharmacol. 2019;10:1011. doi:10.3389/fphar.2019.01011
  • Pan AN, Xu WW, Luo YL, et al. A novel system for predicting liver histopathology in patients with chronic hepatitis B. Medicine. 2017;96(14):e6465. doi:10.1097/MD.0000000000006465
  • Petersen M, Simmonds M. Rosmarinic acid. Phytochemistry. 2003;62(2):121–125. doi:10.1016/s0031-9422(02)00513-7
  • Hsieh CF, Jheng JR, Lin GH, et al. Rosmarinic acid exhibits broad anti-enterovirus A71 activity by inhibiting the interaction between the five-fold axis of capsid VP1 and cognate sulfated receptors. Emerg Microbes Infect. 2020;9(1):1194–1205. doi:10.1080/22221751.2020.1767512
  • Chen SG, Leu YL, Cheng ML, et al. Anti-enterovirus 71 activities of Melissa officinalis extract and its biologically active constituent rosmarinic acid. Sci Rep. 2017;7(1):12264. doi:10.1038/s41598-017-12388-2
  • Chung YC, Hsieh FC, Lin YJ, et al. Magnesium lithospermate B and rosmarinic acid, two compounds present in Salvia miltiorrhiza, have potent antiviral activity against enterovirus 71 infections. Eur J Pharmacol. 2015;755:127–133. doi:10.1016/j.ejphar.2015.02.046
  • Weng JY, Chen XX, Wang XH, et al. Reducing lipid peroxidation attenuates stress-induced susceptibility to herpes simplex virus type 1. Acta Pharmacol Sin. 2023;44(9):1856–1866. doi:10.1038/s41401-023-01095-6
  • Tsukamoto Y, Ikeda S, Uwai K, et al. Rosmarinic acid is a novel inhibitor for Hepatitis B virus replication targeting viral epsilon RNA-polymerase interaction. PLoS One. 2018;13(5):e0197664. doi:10.1371/journal.pone.0197664
  • Jheng J-R, Hsieh C-F, Chang Y-H, et al. Rosmarinic acid interferes with influenza virus A entry and replication by decreasing GSK3β and phosphorylated AKT expression levels. J Microbiol Immunol Infect. 2022;55(4):598–610. doi:10.1016/j.jmii.2022.04.012
  • Moschovou K, Antoniou M, Chontzopoulou E, et al. Exploring the binding effects of natural products and antihypertensive drugs on SARS-CoV-2: an in silico investigation of main protease and spike protein. Int J Mol Sci. 2023;24(21):15894. doi:10.3390/ijms242115894