55
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Integrated Network Pharmacology Analysis and Experimental Validation to Elucidate the Mechanism of Acteoside in Treating Diabetic Kidney Disease

, , , , , , , , , , , & ORCID Icon show all
Pages 1439-1457 | Received 18 Oct 2023, Accepted 05 Apr 2024, Published online: 01 May 2024

References

  • Tuttle KR, Agarwal R, Alpers CE, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022;102(2):248–260. doi:10.1016/j.kint.2022.05.012
  • Persson F, Rossing P. Diagnosis of diabetic kidney disease: state of the art and future perspective. Kidney Int. 2018;8(1):2–7. doi:10.1016/j.kisu.2017.10.003
  • Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab. 2020;22(1):3–15. doi:10.1111/dom.14007
  • Samsu N, Bellini MI. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int. 2021;2021:1497449. doi:10.1155/2021/1497449
  • Valencia WM, Florez H. How to prevent the microvascular complications of type 2 diabetes beyond glucose control. Bmj. 2017;356:i6505. doi:10.1136/bmj.i6505
  • Yang C, Wang H, Zhao X, et al. CKD in China: evolving spectrum and public health implications. Am J Kidney Dis. 2020;76(2):258–264. doi:10.1053/j.ajkd.2019.05.032
  • Lu Z, Zhong Y, Liu W, Xiang L, Deng Y. The efficacy and mechanism of Chinese herbal medicine on diabetic kidney disease. J Diabetes Res. 2019;2019:2697672. doi:10.1155/2019/2697672
  • Lachowicz-Wiśniewska S, Pratap-Singh A, Kapusta I, et al. Flowers and leaves extracts of Stachys palustris l. exhibit stronger anti-proliferative, antioxidant, anti-diabetic, and anti-obesity potencies than stems and roots due to more phenolic compounds as revealed by UPLC-PDA-ESI-TQD-MS/MS. Pharmaceuticals. 2022;15(7):785. doi:10.3390/ph15070785
  • Wang Z, Xia Q, Liu X, et al. Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: a review. J Ethnopharmacol. 2018;210:318–339. doi:10.1016/j.jep.2017.08.040
  • Zhao M, Qian D, Liu P, et al. Comparative pharmacokinetics of catalpol and acteoside in normal and chronic kidney disease rats after oral administration of rehmannia glutinosa extract. Biomed Chromatogr. 2015;29(12):1842–1848. doi:10.1002/bmc.3505
  • Chen X, Ge HZ, Lei SS, et al. Dendrobium officinalis six nostrum ameliorates urate under-excretion and protects renal dysfunction in lipid emulsion-induced hyperuricemic rats. Biomed Pharmacother. 2020;132:110765. doi:10.1016/j.biopha.2020.110765
  • Khan RA, Hossain R, Roy P, et al. Anticancer effects of acteoside: mechanistic insights and therapeutic status. Eur J Pharmacol. 2022;916:174699. doi:10.1016/j.ejphar.2021.174699
  • Khullar M, Sharma A, Wani A, et al. Acteoside ameliorates inflammatory responses through NFkB pathway in alcohol induced hepatic damage. Int Immunopharmacol Apr. 2019;69:109–117. doi:10.1016/j.intimp.2019.01.020
  • Lau CW, Chen ZY, Wong CM, et al. Attenuated endothelium-mediated relaxation by acteoside in rat aorta: role of endothelial [Ca2+]i and nitric oxide/cyclic GMP pathway. Life Sci. 2004;75(10):1149–1157. doi:10.1016/j.lfs.2003.12.031
  • Sheng GQ, Zhang JR, Pu XP, Ma J, Li CL. Protective effect of verbascoside on 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells. Eur J Pharmacol. 2002;451(2):119–124. doi:10.1016/j.biopha.2020.110765
  • Gao W, Zhou Y, Li C, et al. Studies on the metabolism and mechanism of acteoside in treating chronic glomerulonephritis. J Ethnopharmacol. 2023;302(Pt A):115866. doi:10.1016/j.jep.2022.115866
  • Wang Q, Dai X, Xiang X, et al. A natural product of acteoside ameliorate kidney injury in diabetes db/db mice and HK-2 cells via regulating NADPH/oxidase-TGF-β/Smad signaling pathway. Phytother Res. 2021;35(9):5227–5240. doi:10.1002/ptr.7196
  • Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110–120. doi:10.3724/SP.J.1009.2013.00110
  • Barlow DJ, Buriani A, Ehrman T, Bosisio E, Eberini I, Hylands PJ. In-silico studies in Chinese herbal medicines’ research: evaluation of in-silico methodologies and phytochemical data sources, and a review of research to date. J Ethnopharmacol. 2012;140(3):526–534. doi:10.1016/j.jep.2012.01.041
  • Gao W, Gao S, Zhang Y, et al. Altered metabolic profiles and targets relevant to the protective effect of acteoside on diabetic nephropathy in db/db mice based on metabolomics and network pharmacology studies. J Ethnopharmacol. 2024;318(Pt B):117073. doi:10.1016/j.jep.2023.117073
  • Xiao Y, Ren Q, Wu L. The pharmacokinetic property and pharmacological activity of acteoside: a review. Biomed Pharmacother. 2022;153:113296. doi:10.1016/j.biopha.2022.113296
  • Barutta F, Bellini S, Gruden G. Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci. 2022;136(7):493–520. doi:10.1042/cs20210625
  • Abeyrathna P, Su Y. The critical role of Akt in cardiovascular function. Vascul Pharmacol. 2015;74:38–48. doi:10.1016/j.vph.2015.05.008
  • Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. PI3K/AKT signal pathway: a target of natural products in the prevention and treatment of alzheimer’s disease and parkinson’s disease. Front Pharmacol. 2021;12:648636. doi:10.3389/fphar.2021.648636
  • Xie Y, Shi X, Sheng K, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (review). Mol Med Rep. 2019;19(2):783–791. doi:10.3892/mmr.2018.9713
  • Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14(11):1483–1496. doi:10.7150/ijbs.27173
  • Xu W, Yang Z, Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr. 2015;9(4):317–324. doi:10.1080/19336918.2015.1016686
  • Zhang X, Liang D, Chi ZH, et al. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med. 2015;35(6):1747–1754. doi:10.3892/ijmm.2015.2170
  • Zhang Y, Wang Y, Luo M, et al. Elabela protects against podocyte injury in mice with streptozocin-induced diabetes by associating with the PI3K/Akt/mTOR pathway. Peptides. 2019;114:29–37. doi:10.1016/j.peptides.2019.04.005
  • Li Y, Zhao M, He D, et al. HDL in diabetic nephropathy has less effect in endothelial repairing than diabetes without complications. Lipids Health Dis. 2016;15:76. doi:10.1186/s12944-016-0246-z
  • Gao C, Fei X, Wang M, Chen Q, Zhao N. Cardamomin protects from diabetes-induced kidney damage through modulating PI3K/AKT and JAK/STAT signaling pathways in rats. Int Immunopharmacol. 2022;107:108610. doi:10.1016/j.intimp.2022.108610
  • Liu H, Chen W, Lu P, Ma Y, Liang X, Liu Y. Ginsenoside Rg1 attenuates the inflammation and oxidative stress induced by diabetic nephropathy through regulating the PI3K/AKT/FOXO3 pathway. Ann Transl Med. 2021;9(24):1789. doi:10.21037/atm-21-6234
  • Yang F, Qu Q, Zhao C, et al. Paecilomyces cicadae-fermented radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice. Biomed Pharmacother. 2020;129:110479. doi:10.1016/j.biopha.2020.110479
  • Ke G, Chen X, Liao R, et al. Receptor activator of NF-κB mediates podocyte injury in diabetic nephropathy. Kidney Int. 2021;100(2):377–390. doi:10.1016/j.kint.2021.04.036
  • Ma Z, Liu Y, Li C, Zhang Y, Lin N. Repurposing a clinically approved prescription Colquhounia root tablet to treat diabetic kidney disease via suppressing PI3K/AKT/NF-kB activation. Chin Med. 2022;17(1):2. doi:10.1186/s13020-021-00563-7
  • Wang Y, Jin M, Cheng CK, Li Q. Tubular injury in diabetic kidney disease: molecular mechanisms and potential therapeutic perspectives. Front Endocrinol. 2023;14:1238927. doi:10.3389/fendo.2023.1238927
  • Williams BM, Cliff CL, Lee K, Squires PE, Hills CE. The role of the nlrp3 inflammasome in mediating glomerular and tubular injury in diabetic nephropathy. Front Physiol. 2022;13:907504. doi:10.3389/fphys.2022.907504