104
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Molecular Modeling, Synthesis, and Antihyperglycemic Activity of the New Benzimidazole Derivatives – Imidazoline Receptor Agonists

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1035-1052 | Received 07 Nov 2023, Accepted 28 Feb 2024, Published online: 03 Apr 2024

References

  • Dudinskaya EN, Tkacheva ON, Bazaeva EV, et al. New possibilities of using moxonidin for blood pressure control in female patients with osteopenia. Kardiologiya. 2018;58:36–45. doi:10.18087/cardio.2508
  • Tkacheva O, Dudinskaya EN, Bazaeva EV. P3205 New features of use of moxonidine as telomerase activator. Eur Heart J. 2018;39(suppl_1):ehy563–P3205. doi:10.1093/eurheartj/ehy563.P3205
  • Sokoluk TV, Gorbenko NI, Podgayniy DG, Merzlikin SI. Experimental investigations of the influence of the pharmaceutical composition with the two antidiabetic agents on some manifestations of metabolic syndrome X. Farmatsevti Zhurnal. 2009;1:110–114.
  • Chen S, Gan D, Lin S, et al. Metformin in aging and aging-related diseases: clinical applications and relevant mechanisms. Theranostics. 2022;12(6):2722–2740. doi:10.7150/thno.71360
  • Cobos-Puc L, Aguayo-Morales H. cardiovascular effects mediated by imidazoline drugs: an update. Cardiov Haematol Disord Drug Targ. 2019;19(2):95–108. doi:10.2174/1871529X18666180629170336
  • Ernsberger P. The I1‐Imidazoline receptor and its cellular signaling pathways a. Ann NY Acad Sci. 1999;881(1):35–53. doi:10.1111/j.1749-6632.1999.tb09339.x
  • Holt A. Imidazoline binding sites on receptors and enzymes: emerging targets for novel antidepressant drugs? J Psychiatry Neurosci. 2003;28(6):409.
  • Takada K, Hayashi Y, Kamibayashi T, et al. The involvement of pertussis toxin‐sensitive G proteins in the post receptor mechanism of central I1‐imidazoline receptors. Br J Pharmacol. 1997;120(8):1575–1581. doi:10.1038/sj.bjp.0701090
  • Bousquet P, Hudson A, García-Sevilla JA, Li JX. Imidazoline receptor system: the past, the present, and the future. Pharmacol Rev 2020;721:50–79. doi:10.1124/pr.118.016311
  • Zhang W, Li X, Liu Y, Chen H, Gong J. Activation of imidazoline I1 receptor by moxonidine regulates the progression of liver fibrosis in the Nrf2-dependent pathway. Biomed Pharmacother. 2017;90:821–834. doi:10.1016/j.biopha.2017.04.025
  • Tesfai J, Crane L, Baziard-Mouysset G, Edwards LP. Novel I1-Imidazoline agonist S43126 augment insulin secretion in Min6 cells. J Diab Metabol. 2012;3(3). doi:10.4172/2155-6156.1000183
  • Weiss M, Bouchoucha S, Aiad F, et al. Imidazoline-like drugs improve insulin sensitivity through peripheral stimulation of adiponectin and AMPK pathways in a rat model of glucose intolerance. Am J Physiol Endocrinol Metab. 2015;309(2):E95–E104. doi:10.1152/ajpendo.00021.2015
  • Fellmann L, Nascimento AR, Tibiriça E, Bousquet P. Murine models for pharmacological studies of the metabolic syndrome. Pharmacol Ther. 2013;137(3):331–340. doi:10.1016/j.pharmthera.2012.11.004
  • Kawamoto S, Hirakata H, Sugita N, Fukuda K. Bidirectional effects of dexmedetomidine on human platelet functions in vitro. Eur J Pharmacol. 2015;766:122–128. doi:10.1016/j.ejphar.2015.09.049
  • Yang PS, Wu HT, Chung HH, et al. Rilmenidine improves hepatic steatosis through p38-dependent pathway to higher the expression of farnesoid X receptor. Naunyn-Schmiedeberg’s Arch Pharmacol. 2012;385:51–56. doi:10.1007/s00210-011-0691-1
  • Parini A, Moudanos CG, Pizzinat N, Lanier SM. The elusive family of imidazoline binding sites. Trends Pharmacol Sci. 1996;17(1):13–16. doi:10.1016/0165-6147(96)81564-1
  • Zomkowski AD, Hammes L, Lin J, Calixto JB, Santos ARS, Rodrigues ALS. Agmatine produces antidepressant-like effects in two models of depression in mice. Neuroreport. 2002;13(4):387–391. doi:10.1097/00001756-200203250-00005
  • Abás S, Erdozain AM, Keller B, et al. Neuroprotective effects of a structurally new family of high affinity imidazoline I2 receptor ligands. ACS Chem Neurosci. 2017;8(4):737–742. doi:10.1021/acschemneuro.6b00426
  • Tyacke RJ, Myers JF, Venkataraman A, et al. Evaluation of 11C-BU99008, a PET Ligand for the Imidazoline2 binding site in human brain. J Nucl Med. 2018;59(10):1597–1602. doi:10.2967/jnumed.118.208009
  • Parker CA, Nabulsi N, Holden D, et al. Evaluation of 11C-BU99008, a PET ligand for the imidazoline2 binding sites in rhesus brain. J Nucl Med. 2014;55(5):838–844. doi:10.2967/jnumed.113.131854
  • Boronat MA, Olmos G, García‐Sevilla JA. Attenuation of tolerance to opioid‐induced antinociception and protection against morphine‐induced decrease of neurofilament proteins by idazoxan and other I2‐imidazoline ligands. Br J Pharmacol. 1998;125(1):175–185. doi:10.1038/sj.bjp.0702031
  • Sánchez‐Blázquez P, Boronat MA, Olmos G, García‐Sevilla JA, Garzón J. Activation of I2‐imidazoline receptors enhances supraspinal morphine analgesia in mice: a model to detect agonist and antagonist activities at these receptors. Br J Pharmacol. 2000;130(1):146–152. doi:10.1038/sj.bjp.0703294
  • Gentili F, Cardinaletti C, Carrieri A, et al. Involvement of I2-imidazoline binding sites in positive and negative morphine analgesia modulatory effects. Eur J Pharmacol. 2006;553(1–3):73–81. doi:10.1016/j.ejphar.2006.09.031
  • Thorn DA, Zhang Y, Peng BW, Winter JC, Li JX. Effects of imidazoline I2 receptor ligands on morphine-and tramadol-induced antinociception in rats. Eur J Pharmacol. 2011;670(2–3):435–440. doi:10.1016/j.ejphar.2011.09.173
  • Sampson C, Zhang Y, Del Bello F, Li J-X. Effects of imidazoline I2 receptor ligands on acute nociception in rats. Neuroreport. 2012;23(2):73–77. doi:10.1097/WNR.0b013e32834e7db3
  • Li JX, Zhang Y. Imidazoline I2 receptors: target for new analgesics? Eur J Pharmacol. 2011;658(2–3):49–56. doi:10.1016/j.ejphar.2011.02.038
  • Hunskaar S, Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain. 1987;30(1):103–114. doi:10.1016/0304-3959(87)90088-1
  • Thorn DA, Zhang Y, Li J. Effects of the imidazoline I2 receptor agonist 2‐BFI on the development of tolerance to and behavioural/physical dependence on morphine in rats. Br J Pharmacol. 2016;173(8):1363–1372. doi:10.1111/bph.13435
  • Ferrari F, Fiorentino S, Mennuni L, et al. Analgesic efficacy of CR4056, a novel imidazoline-2 receptor ligand, in rat models of inflammatory and neuropathic pain. J Pain Res;2011. 111–125. doi:10.2147/JPR.S18353
  • Siemian JN, Li J, Zhang Y, Li JX. Interactions between imidazoline I 2 receptor ligands and Acetaminophen in adult male rats: antinociception and schedule-controlled responding. Psychopharmacology. 2016;233:873–882. doi:10.1007/s00213-015-4166-9
  • Meregalli C, Ceresa C, Canta A, et al. CR4056, a new analgesic I2 ligand, is highly effective against bortezomib-induced painful neuropathy in rats. J Pain Res;2012. 151–167. doi:10.2147/JPR.S32122
  • Lanza M, Ferrari F, Menghetti I, Tremolada D, Caselli G. Modulation of imidazoline I 2 binding sites by CR 4056 relieves postoperative hyperalgesia in male and female rats. Br J Pharmacol. 2014;171(15):3693–3701. doi:10.1111/bph.12728
  • Eglen RM, Hudson AL, Kendall DA, et al. Seeing through a glass darkly’: casting light on imidazolineI’sites. Trends Pharmacol Sci. 1998;19(9):381–390. doi:10.1016/S0165-6147(98)01244-9
  • Morgan NG, Chan SL. Imidazoline binding sites in the endocrine pancreas: can they fulfil their potential as targets for the development of new insulin secretagogues? Curr Pharm Des. 2001;7(14):1413–1431. doi:10.2174/1381612013397366
  • Cerasi E, Effendic S, Luft R. Role of adrenergic receptors in glucose-induced insulin secretion in man. Lancet. 1969;294:7615):301–302. doi:10.1016/S0140-6736(69)90059-2
  • Chan SL, Brown CA, Scarpello KE, Morgan NG. The imidazoline site involved in control of insulin secretion: characteristics that distinguish it from I1‐and I2‐sites. Br J Pharmacol. 1994;112(4):1065–1070. doi:10.1111/j.1476-5381.1994.tb13191.x
  • Berdeu D, Gross R, Puech R, Loubatières-Mariani MM, Bertrand G. Evidence for two different imidazoline sites on pancreatic B cells and vascular bed in rat. Eur J Pharmacol. 1995;275(1):91–98. doi:10.1016/0014-2999(94)00757-X
  • Ishida‐Takahashi A, Horie M, Tsuura Y, Ishida H, Ai T, Sasayama S. Block of pancreatic ATP‐sensitive K+ channels and insulinotrophic action by the antiarrhythmic agent, cibenzoline. Br J Pharmacol. 1996;117(8):1749–1755. doi:10.1111/j.1476-5381.1996.tb15349.x
  • Proks P, Ashcroft FM. Phentolamine block of KATP channels is mediated by Kir6. 2. Proc Natl Acad Sci. 1997;94(21):11716–11720. doi:10.1073/pnas.94.21.11716
  • Monks LK, Cosgrove KE, Dunne MJ, Ramsden CA, Morgan NG, Chan SL. Affinity isolation of imidazoline binding proteins from rat brain using 5-amino-efaroxan as a ligand. FEBS Lett. 1999;447(1):61–64. doi:10.1016/S0014-5793(99)00264-1
  • Ferrer-Montiel AV, Merino JM, Planells-Cases R, Sun W, Montal M. Structural determinants of the blocker binding site in glutamate and NMDA receptor channels. Neuropharmacology. 1998;37(2):139–147. doi:10.1016/S0028-3908(98)00007-0
  • Roberg K, Johansson U, Öllinger K. Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic Biol Med. 1999;27(11–12):1228–1237. doi:10.1016/S0891-5849(99)00146-X
  • Ziegler D, Haxhiu MA, Kaan EC, Papp JG, Ernsberger P. Pharmacology of moxonidine, an I1-imidazoline receptor agonist. J Cardiov Pharmacol. 1996;27:S26–S37. doi:10.1097/00005344-199627003-00005
  • Yamakura T, Shimoji K. Subunit-and site-specific pharmacology of the NMDA receptor channel. Prog Neurobiol. 1999;59(3):279–298. doi:10.1016/S0301-0082(99)00007-6
  • Basile L, Pappalardo M, Guccione S, Milardi D, Ramsay RR. Computational comparison of imidazoline association with the I2 binding site in human monoamine oxidases. J Chem Inf Model. 2014;54(4):1200–1207. doi:10.1021/ci400346k
  • Nikolic K, Veljkovic N, Gemovic B, Srdic-Rajic T, Agbaba D. Imidazoline-1 receptor ligands as apoptotic agents: pharmacophore modeling and virtual docking study. Comb Chem High Through Screen. 2013;16(4):298–319. doi:10.2174/1386207311316040004
  • Tong L, Cui D, Zeng J. Topical bendazol inhibits experimental myopia progression and decreases the ocular accumulation of HIF‐1α protein in young rabbits. Ophthalmic Physiol Opt. 2020;40(5):567–576. doi:10.1111/opo.12717
  • Abramets II, Zayka TO, Evdokimov DV, Kuznetsov YV, Sidorova YV. Researches of the imidazole and indole derivatives cerebroprotective activity and its impact on effects of antidepressants. Pharmacokin Pharmacod. 2020;(1):18–24. doi:10.37489/2587-7836-2020-1-18-24
  • Brishty SR, MdJ H, Khandaker MU, Faruque MRI, Osman H, Rahman SMA. A comprehensive account on recent progress in pharmacological activities of benzimidazole derivatives. Front Pharmacol. 2021;12:762807. doi:10.3389/fphar.2021.762807
  • Atilgan E, Hu J. Improving protein docking using sustainable genetic algorithms. Int J Compu Inoform Sys Ind Manag App. 2011;3:248–255.
  • Štekláč M, Zajaček D, Bučinský L. 3CLpro and PLpro affinity, a docking study to fight COVID19 based on 900 compounds from PubChem and literature. Are there new drugs to be found? J Mol Struct. 2021;1245:130968. doi:10.1016/j.molstruc.2021.130968
  • Land H, Humble MS. YASARA: a tool to obtain structural guidance in biocatalytic investigations. Prot Engine. 2018;43–67. doi:10.1007/978-1-4939-7366-8_4
  • Belyaeva J, Zlobin A, Maslova V, Golovin A. Modern non-polarizable force fields diverge in modeling the enzyme–substrate complex of a canonical serine protease. Phys Chem Chem Phys. 2023;25(8):6352–6361. doi:10.1039/D2CP05502C
  • Hsu KC, Chen YF, Lin SR, Yang JM. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinf. 2011;12(S1):S33. doi:10.1186/1471-2105-12-S1-S33
  • Azad I, Khan T, Maurya AK, Irfan Azad M, Mishra N, Alanazi AM. Identification of severe acute respiratory syndrome coronavirus‐2 inhibitors through in silico structure‐based virtual screening and molecular interaction studies. J Mol Recog. 2021;34(10):e2918. doi:10.1002/jmr.2918
  • Velavan S, Karnan R, Kanivalan N. A comparative study on In silico software’s in statistical relation to molecular docking scores. Asian J Innov Res. 2020;5(2):1–5.
  • Ahmad R. Steroidal glycoalkaloids from Solanum nigrum target cytoskeletal proteins: an in silico analysis. PeerJ. 2019;7:e6012. doi:10.7717/peerj.6012
  • Yuan S, Chan HS, Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip Rev Comput Mol Sci. 2017;7(2):e1298. doi:10.1002/wcms.1298
  • Yuan S, Chan HS, Filipek S, Vogel H. PyMOL and Inkscape bridge the data and the data visualization. Structure. 2016;24(12):2041–2042. doi:10.1016/j.str.2016.11.012
  • Sandy S. In silico molecular docking of the antimalarial flavonoid compound macaranga (macaranga tanarius) against the PfDHFR Enzyme. Curr Trends Biotechnol Pharm. 2023;17(3):929–936.
  • Mahboobi M, Salmanian AH, Sedighian H, Bambai B. Molecular Modeling and Optimization of Type II E. coli l-Asparginase Activity by in silico Design and in vitro Site-directed Mutagenesis. Prot J. 2023;2023:1–11.
  • Kuvarina AE, Sukonnikov MA, Rogozhin EA, et al. Formation of various antimicrobial peptide emericellipsin isoforms in emericellopsos alkalina under different cultivation conditions. Appl Biochem Microbiol. 2023;59(2):160–167. doi:10.1134/S0003683823020060
  • Nishanth S, Chikunov AS, Thankappan S, Taran OP, Parmon VN, Uthandi S. Lignin derived aromatic monomers from birch wood by laccase (LccH) pretreatment and Ru/C catalyst: a two-pot approach for sustainable biorefineries. Biomass Convers Biorefin. 2022;2022:1–16.
  • Abdel-karim AM, Shahen S, Elsisi DM, Hyba AM, El-Shamy OA. Experimental and theoretical studies of corrosion resistance enhancement of carbon steel in 1 M HCl by quinoxalinosulfonamide hybrid-bearing theophylline moiety. J Bio- Tribo-Corros. 2022;8(3):70. doi:10.1007/s40735-022-00666-0
  • Ezzat A, Mohamed MBI, Mahmoud AM, Farag RS, El-Tabl AS, Ragab A. Synthesis, spectral characterization, antimicrobial evaluation and molecular docking studies of new Cu (II), Zn (II) thiosemicarbazone based on sulfonyl isatin. J Mol Struct. 2022;1251:132004. doi:10.1016/j.molstruc.2021.132004
  • Nasser M, Alyamani AA, Daou A, et al. Influence of the extraction solvent and of the altitude on the anticancer activity of Lebanese eucalyptus camaldulensis extract alone or in combination with low dose of cisplatin in A549 human lung adenocarcinoma cells. Processes. 2022;10(8):1461. doi:10.3390/pr10081461
  • Sarter M. Cooperative change in the internal dynamics of streptavidin caused by biotin binding. J Phys Chem A. 2023;127(14):3241–3247. doi:10.1021/acs.jpcb.3c00427
  • Yamada S, Kataoka M, Yoshida K, et al. Development of hydrogen-bonded dimer-type photoluminescent liquid crystals of fluorinated tolanecarboxylic acid. Crystals. 2022;13(1):25. doi:10.3390/cryst13010025
  • Vasil’ev SG, Panicheva KV. The self-di usion of 128-arm star-shaped polydimethylsiloxanes with a dendritic branching center. In: Magnetic Resonance and Its Applications. Spinus-2022; 2022:176–177.
  • Nekkalapudi AR, Veldi VG, Pippalla S. A novel RP-HPLC method for estimating fulvestrant, benzoyl alcohol, and benzyl benzoate in injection formulation. Am J Anal Chem. 2022;13(7):229–240. doi:10.4236/ajac.2022.137016
  • Slassi S, Aarjane M, Amine A. Synthesis, spectroscopic characterization (FT-IR, NMR, UV-Vis), DFT study, antibacterial and antioxidant in vitro investigations of 4, 6-bis ((E)-1-((3-(1H-imidazol-1-yl) propyl) imino) ethyl) benzene-1, 3-diol. J Mol Struct. 2022;1255:132457. doi:10.1016/j.molstruc.2022.132457
  • Ramirez H, Dominguez J, Fernandez-Moreira E, Rodrigues J, Rodriguez M, Charris JE. Synthesis of 4-Benzylsulfanyl and 4-benzylsulfonyl chalcones. biological evaluation as antimalarial agents. Vaccine. 2022;3:4.
  • Jena GB, Chavan S. Implementation of good laboratory practices (GLP) in basic scientific research: translating the concept beyond regulatory compliance. Regul Toxicol Pharmacol. 2017;89:20–25. doi:10.1016/j.yrtph.2017.07.010
  • Olsson IAS, da SSP, Townend D, Sandøe P. Protecting animals and enabling research in the European Union: an overview of development and implementation of directive 2010/63/EU. ILAR Jl. 2017;57(3):347–357. doi:10.1093/ilar/ilw029
  • Mustafakulov M, Kimsanova N, Hamdamova N, et al. Determination of antioxidant properties of l-cysteine in the liver of alloxan diabetes model rats. Internat J Contemp Sci Tech Res. 2023;2023:47–54.
  • Akoko S, Aleme BM, Uahomo PO. The effect of addition of extracts of Vernonia amygdalina and Moringa oleifera in the nutrition of alloxan-induced diabetic Wistar Rats. Inter J Phar Res Health Sci. 2022;10(4):3455–3462.
  • Etuk EU. Animals models for studying diabetes mellitus. Agric Biol J North Am. 2010;1(2):130–134.
  • Katz LB, Stewart L, Guthrie B, Cameron H. Patient satisfaction with a new, high accuracy blood glucose meter that provides personalized guidance, insight, and encouragement. J Diabet Sci Technol. 2020;14(2):318–323. doi:10.1177/1932296819867396
  • Maraš N, Kočevar M. Boric acid‐catalyzed direct condensation of carboxylic acids with benzene‐1, 2‐diamine into benzimidazoles. Helvetica Chim Acta. 2011;94(10):1860–1874. doi:10.1002/hlca.201100064