42
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Sinomenine Hydrochloride Protects IgA Nephropathy Through Regulating Cell Growth and Apoptosis of T and B Lymphocytes

ORCID Icon, , , , & ORCID Icon
Pages 1247-1262 | Received 21 Nov 2023, Accepted 08 Apr 2024, Published online: 18 Apr 2024

References

  • Huang C, Li X, Wu J, et al. The landscape and diagnostic potential of T and B cell repertoire in immunoglobulin a nephropathy. J Autoimmun. 2019;97:100–107. doi:10.1016/j.jaut.2018.10.018
  • Hotta O, Ieiri N, Nagai M, Tanaka A, Harabuchi Y. Role of palatine tonsil and epipharyngeal lymphoid tissue in the development of glomerular active lesions (glomerular vasculitis) in immunoglobulin a nephropathy. Int J Mol Sci. 2022;23:727. doi:10.3390/ijms23020727
  • Park JI, Kim TY, Oh B, et al. Comparative analysis of the tonsillar microbiota in IgA nephropathy and other glomerular diseases. Sci Rep. 2020;10(1):16206. doi:10.1038/s41598-020-73035-x
  • Thompson A, Carroll K, L AI, et al. Proteinuria reduction as a surrogate end point in trials of IgA nephropathy. Clin J Am Soc Nephrol. 2019;14(3):469–481. doi:10.2215/CJN.08600718
  • Taylor S, Pieri K, Nanni P, Tica J, Barratt J, Didangelos A. Phosphatidylethanolamine binding protein-4 (PEBP4) is increased in IgA nephropathy and is associated with IgA-positive B-cells in affected kidneys. J Autoimmun. 2019;105:102309. doi:10.1016/j.jaut.2019.102309
  • Moroni G, Belingheri M, Frontini G, Tamborini F, Messa P. Immunoglobulin A nephropathy. recurrence after renal transplantation. Front Immunol. 2019;10:1332. doi:10.3389/fimmu.2019.01332
  • Ohyama Y, Renfrow MB, Novak J, Takahashi K. Aberrantly glycosylated IgA1 in iga nephropathy: what we know and what we don’t know. J Clin Med. 2021;10(16). doi:10.3390/jcm10163467
  • Xie X, Liu P, Gao L, et al. Renal deposition and clearance of recombinant poly-IgA complexes in a model of IgA nephropathy. J Pathol. 2021;254(2):159–172. doi:10.1002/path.5658
  • Seikrit C, Pabst O. The immune landscape of IgA induction in the gut. Semin Immun. 2021;43(5):627–637. doi:10.1007/s00281-021-00879-4
  • Bemark M, Angeletti D. Know your enemy or find your friend?-induction of IgA at mucosal surfaces. Immunol Rev. 2021;303(1):83–102. doi:10.1111/imr.13014
  • Gesualdo L, Di Leo V, Coppo R. The mucosal immune system and IgA nephropathy. Semin Immun. 2021;43(5):657–668. doi:10.1007/s00281-021-00871-y
  • Floege J, Rauen T, Tang SCW. Current treatment of IgA nephropathy. Semin Immun. 2021;43(5):717–728. doi:10.1007/s00281-021-00888-3
  • Weiberg D, Basic M, Smoczek M, Bode U, Bornemann M, Buettner M. Participation of the spleen in the IgA immune response in the gut. PLoS One. 2018;13(10):e0205247. doi:10.1371/journal.pone.0205247
  • Zheng N, Xie K, Ye H, et al. TLR7 in B cells promotes renal inflammation and Gd-IgA1 synthesis in IgA nephropathy. JCI Insight. 2020;5. doi:10.1172/jci.insight.136965
  • Makita Y, Suzuki H, Kano T, et al. TLR9 activation induces aberrant IgA glycosylation via April- and IL-6-mediated pathways in IgA nephropathy. Kidney Int. 2020;97(2):340–349. doi:10.1016/j.kint.2019.08.022
  • He JW, Zhou XJ, Lv JC, Zhang H. Perspectives on how mucosal immune responses, infections and gut microbiome shape IgA nephropathy and future therapies. Theranostics. 2020;10(25):11462–11478. doi:10.7150/thno.49778
  • Lin Y, Yin P, Zhu Z, et al. Epigenome-wide association study and network analysis for IgA nephropathy from CD19(+) B-cell in Chinese Population. Epigenetics. 2021;16(12):1283–1294. doi:10.1080/15592294.2020.1861171
  • Liu Y, Zheng J, Zhao N, Jia J, Yan T. ELL2 Is downregulated and associated with galactose-deficient IgA1 in IgA nephropathy. Dis Markers. 2019;2019:2407067. doi:10.1155/2019/2407067
  • Selvaskandan H, Gonzalez-Martin G, Barratt J, Cheung CK. IgA nephropathy: an overview of drug treatments in clinical trials. Expert Opin Investig Drugs. 2022;31(12):1321–1338. doi:10.1080/13543784.2022.2160315
  • Zhao Y, Liu H. Mechanism for the therapeutic effect of tripterygium wilfordii hook. f. preparations on IgA nephropathy. J Cent South Univ. 2022;47(05):573–582. doi:10.11817/j.issn.1672-7347.2022.210410
  • Zhang W, Yuan Y, Li X, et al. Orange-derived and dexamethasone-encapsulated extracellular vesicles reduced proteinuria and alleviated pathological lesions in IgA nephropathy by targeting intestinal lymphocytes. Front Immunol. 2022;13:900963. doi:10.3389/fimmu.2022.900963
  • Wang X, Li T, Si R, Chen J, Qu Z, Jiang Y. Increased frequency of PD-1(hi)CXCR5(-) T cells and B cells in patients with newly diagnosed IgA nephropathy. Sci Rep. 2020;10(1):492. doi:10.1038/s41598-019-57324-8
  • Wei SY, Guo S, Feng B, Ning SW, Du XY. Identification of miRNA-mRNA network and immune-related gene signatures in IgA nephropathy by integrated bioinformatics analysis. BMC Nephrol. 2021;22(1):392. doi:10.1186/s12882-021-02606-5
  • Du W, Gao CY, You X, et al. Increased proportion of follicular helper T cells is associated with B cell activation and disease severity in IgA nephropathy. Front Immunol. 2022;13:901465. doi:10.3389/fimmu.2022.901465
  • Ruszkowski J, Lisowska KA, Pindel M, Heleniak Z, Dębska-ślizień A, Witkowski JM. T cells in IgA nephropathy: role in pathogenesis, clinical significance and potential therapeutic target. Clin Exp Nephrol. 2019;23(3):291–303. doi:10.1007/s10157-018-1665-0
  • Ka SM, Hsieh TT, Lin SH, et al. Decoy receptor 3 inhibits renal mononuclear leukocyte infiltration and apoptosis and prevents progression of IgA nephropathy in mice. Am J Physiol Renal Physiol. 2011;301(6):F1218–1230. doi:10.1152/ajprenal.00050.2011
  • Gan L, Li X, Zhu M, Chen C, Luo H, Zhou Q. Acteoside relieves mesangial cell injury by regulating Th22 cell chemotaxis and proliferation in IgA nephropathy. Ren Fail. 2018;40(1):364–370. doi:10.1080/0886022x.2018.1450762
  • Liu L, Michowski W, Kolodziejczyk A, Sicinski P. The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat Cell Biol. 2019;21(9):1060–1067. doi:10.1038/s41556-019-0384-4
  • Shkarina K, Broz P. Selective induction of programmed cell death using synthetic biology tools. Semin Cell Dev Biol. 2023;156:74–92. doi:10.1016/j.semcdb.2023.07.012
  • Zhu L, Dai LM, Shen H, et al. Qing Chang Hua Shi granule ameliorate inflammation in experimental rats and cell model of ulcerative colitis through MEK/ERK signaling pathway. Biomed Pharmacother. 2019;116:108967. doi:10.1016/j.biopha.2019.108967
  • Zhang T, Ouyang X, Gou S, et al. Novel synovial targeting peptide-sinomenine conjugates as a potential strategy for the treatment of rheumatoid arthritis. Int J Pharm. 2022;617:121628. doi:10.1016/j.ijpharm.2022.121628
  • Liu Y, Sun Y, Zhou Y, et al. Sinomenine hydrochloride inhibits the progression of plasma cell mastitis by regulating IL-6/JAK2/STAT3 pathway. Int Immunopharmacol. 2020;81:106025. doi:10.1016/j.intimp.2019.106025
  • Gao WJ, Liu JX, Xie Y, et al. Suppression of macrophage migration by down-regulating Src/FAK/P130Cas activation contributed to the anti-inflammatory activity of sinomenine. Pharmacol Res. 2021;167:105513. doi:10.1016/j.phrs.2021.105513
  • Panos GD, Boeckler FM. Statistical analysis in clinical and experimental medical research: simplified guidance for authors and reviewers. Drug Des Devel Ther. 2023;17(1959–61):1959–1961. doi:10.2147/DDDT.S427470
  • Festing MF. Design and statistical methods in studies using animal models of development. ILAR j. 2006;47(1):5–14. doi:10.1093/ilar.47.1.5
  • He J, Peng F, Chang J, et al. The therapeutic effect of Shenhua tablet against mesangial cell proliferation and renal inflammation in mesangial proliferative glomerulonephritis. Biomed Pharmacother. 2023;165:115233. doi:10.1016/j.biopha.2023.115233
  • Lee GH, Hwang KA, Choi KC. Effects of fludioxonil on the cell growth and apoptosis in T and B lymphocytes. Biomolecules. 2019;9:9. doi:10.3390/biom9090500
  • Suzuki H, Novak J. IgA glycosylation and immune complex formation in IgAN. Semin Immun. 2021;43(5):669–678. doi:10.1007/s00281-021-00883-8
  • Liu J, Tang X, Xu X, et al. Review on research progress of experimental animal model of IgA nephropathy. Radi Chin Drug Res Clin Pharm. 2019;30(02):257–263. doi:10.19378/j.issn.1003-9783.2019.02.021
  • Chang S, Li XK. the role of immune modulation in pathogenesis of IgA nephropathy. Front Med Lausanne. 2020;7:92. doi:10.3389/fmed.2020.00092
  • Rizk DV, Maillard N, Julian BA, et al. The emerging role of complement proteins as a target for therapy of IgA nephropathy. Front Immunol. 2019;10:504. doi:10.3389/fimmu.2019.00504
  • Yang JYC, Sarwal RD, Fervenza FC, Sarwal MM, Lafayette RA. Noninvasive urinary monitoring of progression in IgA nephropathy. Int J Mol Sci. 2019;20:18. doi:10.3390/ijms20184463
  • Tan Q, Xue H, Ni X, Fan L, Du W. Comparative effectiveness and safety for the treatments despite optimized renin-angiotensin system blockade among IgA nephropathy patients at high-risk of disease progression: a network meta-analysis of randomized controlled trials. Eur J Intern Med. 2023;114:66–73. doi:10.1016/j.ejim.2023.04.022
  • Vaz de Castro PAS, Bitencourt L, Pereira BWS, et al. Efficacy and safety of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for IgA nephropathy in children. Pediatr Nephrol. 2022;37(3):499–508. doi:10.1007/s00467-021-05316-0
  • Fellström BC, Barratt J, Cook H, et al. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): a double-blind, randomised, placebo-controlled phase 2b trial. Lancet. 2017;389(10084):2117–2127. doi:10.1016/S0140-6736(17)30550-0
  • Barratt J, Lafayette R, Kristensen J, et al. Results from part A of the multi-center, double-blind, randomized, placebo-controlled NefIgArd trial, which evaluated targeted-release formulation of budesonide for the treatment of primary immunoglobulin A nephropathy. Kidney Int. 2023;103(2):391–402. doi:10.1016/j.kint.2022.09.017
  • Haraldsson B. Phase 3 trial results bring hope for patients with IgA nephropathy. Lancet. 2023;402:827–829. doi:10.1016/S0140-6736(23)01633-1
  • Liang Y, Zeng Q, Wang XH, Yan L, Yu RH. Mechanism of Yiqi Yangying Heluo formula in the treatment of IgA nephropathy by affecting Gd-IgA1 based on BAFF molecular level and T lymphocyte immunity. Biomed Res Int. 2023;2023:5124034. doi:10.1155/2023/5124034
  • Tang R, Meng T, Lin W, et al. A Partial Picture of the single-cell transcriptomics of human IgA Qropathy. Front Immunol. 2021;12:645988. doi:10.3389/fimmu.2021.645988
  • Gorski JW, Ueland FR, Kolesar JM. CCNE1 amplification as a predictive biomarker of chemotherapy resistance in epithelial ovarian cancer. Diagnostics. 2020;10:5. doi:10.3390/diagnostics10050279
  • Fagundes R, Teixeira LK. Cyclin E/CDK2: DNA replication, replication stress and genomic instability. Front Cell Dev Biol. 2021;9:774845. doi:10.3389/fcell.2021.774845
  • McArthur K, Kile BT. Apoptotic mitochondria prime anti-tumour immunity. Cell Death Discov. 2020;6(1):98. doi:10.1038/s41420-020-00335-6
  • Zhang MW, Wang XH, Shi J, Yu JG. Sinomenine in cardio-cerebrovascular diseases: potential therapeutic effects and pharmacological evidences. Front Cardiovasc Med. 2021;8:749113. doi:10.3389/fcvm.2021.749113
  • Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol. 2023;24:732–748. doi:10.1038/s41580-023-00629-4