208
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Network Pharmacology and Molecular Docking Identify the Potential Mechanism and Therapeutic Role of Scutellaria baicalensis in Alzheimer’s Disease

&
Pages 1199-1219 | Received 03 Dec 2023, Accepted 04 Apr 2024, Published online: 18 Apr 2024

References

  • Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, San Luciano M, Tanner C. The epidemiology of Parkinson’s disease. Lancet. 2024;403(10423):283–292. PubMed PMID: 38245248. doi:10.1016/s0140-6736(23)01419-8
  • Diaz-Galvan P, Przybelski SA, Algeciras-Schimnich A, et al. Plasma biomarkers of Alzheimer’s disease in the continuum of dementia with Lewy bodies. Alzheimers Dement. 2024. PubMed PMID: 38329197. doi:10.1002/alz.13653
  • Florian H, Wang D, Arnold SE, et al. Tilavonemab in early Alzheimer’s disease: results from a Phase 2, randomized, double-blind study. Brain. 2023;146(6):2275–2284. PubMed PMID: 36730056; PubMed Central PMCID: PMCPMC10232284. doi:10.1093/brain/awad024
  • Landau SM, Lee J, Murphy A, et al. Individuals with Alzheimer’s disease and low tau burden: characteristics and implications. Alzheimers Dement. 2024. PubMed PMID: 38241084. doi:10.1002/alz.13609
  • O’Leary K. Modeling real-world data to repurpose drugs for Alzheimer’s disease. Nature Med. 2024. PubMed PMID: 38238602. doi:10.1038/d41591-024-00003-7
  • Nemy M, Dyrba M, Brosseron F, et al. Cholinergic white matter pathways along the Alzheimer’s disease continuum. Brain. 2023;146(5):2075–2088. PubMed PMID: 36288546; PubMed Central PMCID: PMCPMC10151179. doi:10.1093/brain/awac385
  • Liu C, Zhang L, Li Y, Li M, Han H, Wang K. Traditional Chinese Patent Medicine in the treatment of Alzheimer’s disease: a systematic review and network meta-analysis. Am J Chin Med. 2023;51(3):517–546. PubMed PMID: 36866797. doi:10.1142/s0192415x2350026x
  • Yan H, Feng L, Li M. The role of Traditional Chinese Medicine Natural Products in β-amyloid deposition and tau protein hyperphosphorylation in Alzheimer’s disease. Drug Des Devel Ther. 2023;17:3295–3323. PubMed PMID: 38024535; PubMed Central PMCID: PMCPMC10655607. doi:10.2147/dddt.S380612
  • Lei X, Xu H, Wang Y, et al. Integrating network pharmacology and component analysis to study the potential mechanisms of Qi-Fu-Yin Decoction in Treating Alzheimer’s disease. Drug Des Devel Ther. 2023;17:2841–2858. PubMed PMID: 37727255; PubMed Central PMCID: PMCPMC10506672. doi:10.2147/dddt.S402624
  • Seo HW, Ha TY, Ko G, et al. Scutellaria baicalensis attenuated neurological impairment by regulating programmed cell death pathway in ischemic stroke mice. Cells. 2023;12(17). PubMed PMID: 37681864; PubMed Central PMCID: PMCPMC10486384. doi:10.3390/cells12172133
  • Delerue T, Fátima Barroso M, Dias-Teixeira M, Figueiredo-González M, Delerue-Matos C, Grosso C. Interactions between Ginkgo biloba L. and Scutellaria baicalensis Georgi in multicomponent mixtures towards cholinesterase inhibition and ROS scavenging. Food Res Int. 2021;140:109857. PubMed PMID: 33648175. doi:10.1016/j.foodres.2020.109857
  • Huang J, Zhang X, Yang X, et al. Baicalin exerts neuroprotective actions by regulating the Nrf2-NLRP3 axis in toxin-induced models of Parkinson’s disease. Chem Biol Interact. 2024;387:110820. PubMed PMID: 38016618. doi:10.1016/j.cbi.2023.110820
  • Liu H, Liu H, Zhou Z, et al. Scutellaria baicalensis enhances 5-fluorouracil-based chemotherapy via inhibition of proliferative signaling pathways. Cell Commun Signal. 2023;21(1):147. PubMed PMID: 37337282; PubMed Central PMCID: PMCPMC10278337. doi:10.1186/s12964-023-01156-7
  • Zhang S, Lv H, Cai X, et al. Effects of the compound extracts of Caprifoliaceae and Scutellaria baicalensis Georgi on the intestinal microbiota and antioxidant function. Front Microbiol. 2023;14:1289490. PubMed PMID: 38282732; PubMed Central PMCID: PMCPMC10822692. doi:10.3389/fmicb.2023.1289490
  • Jalili S, Panji M, Mahdavimehr M, et al. Enhancing anti-amyloidogenic properties and antioxidant effects of Scutellaria baicalensis polyphenols through novel nanoparticle formation. Int J Biol Macromol. 2024;262(Pt 1):130003. PubMed PMID: 38325696. doi:10.1016/j.ijbiomac.2024.130003
  • Gao L, Zhao JX, Qin XM, Zhao J. The ethanol extract of Scutellaria baicalensis Georgi attenuates complete Freund’s adjuvant (CFA)-induced inflammatory pain by suppression of P2X3 receptor. J Ethnopharmacol. 2023;317:116762. PubMed PMID: 37301308. doi:10.1016/j.jep.2023.116762
  • Zhang H, Liu QQ, Ding SK, Li H, Shang YZ. Flavonoids from stems and leaves of Scutellaria baicalensis Georgi improve composited Aβ-induced Alzheimer’s disease model rats’ memory and neuroplasticity disorders. Comb Chem High Throughput Screen. 2023;26(8):1519–1532. PubMed PMID: 36200197. doi:10.2174/1386207325666221003092627
  • Wang R, Shen X, Xing E, Guan L, Xin L. Scutellaria baicalensis stem-leaf total flavonoid reduces neuronal apoptosis induced by amyloid beta-peptide (25–35). Neural Regen Res. 2013;8(12):1081–1090. PubMed PMID: 25206402; PubMed Central PMCID: PMCPMC4145899. doi:10.3969/j.issn.1673-5374.2013.12.003
  • Jiashuo WU, Fangqing Z, Zhuangzhuang LI, Weiyi J, Yue S. Integration strategy of network pharmacology in Traditional Chinese Medicine: a narrative review. J Tradit Chin Med. 2022;42(3):479–486. PubMed PMID: 35610020; PubMed Central PMCID: PMCPMC9924699. doi:10.19852/j.cnki.jtcm.20220408.003
  • Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol. 2023;309:116306. PubMed PMID: 36858276. doi:10.1016/j.jep.2023.116306
  • Li X, Liu Z, Liao J, Chen Q, Lu X, Fan X. Network pharmacology approaches for research of Traditional Chinese Medicines. Chin J Nat Med. 2023;21(5):323–332. PubMed PMID: 37245871. doi:10.1016/s1875-5364(23)60429-7
  • Yang WG, Sun A, Zhu R, Liu N, He WJ, Liu LL. Exploration of artemisinin against IgA nephropathy via AKT/Nrf2 pathway by bioinformatics and experimental validation. Drug Des Devel Ther. 2023;17:1679–1697. PubMed PMID: 37309415; PubMed Central PMCID: PMCPMC10257916. doi:10.2147/dddt.S403422
  • Qi D, Li H, Liang C, et al. Herb-drug interaction of Xingnaojing injection and Edaravone via pharmacokinetics, mixed inhibition of UGTs, and molecular docking. Phytomedicine. 2023;112:154696. PubMed PMID: 36764095. doi:10.1016/j.phymed.2023.154696
  • Vicente-Zurdo D, Rosales-Conrado N, León-González ME. Unravelling the in vitro and in vivo potential of selenium nanoparticles in Alzheimer’s disease: a bioanalytical review. Talanta. 2024;269:125519. PubMed PMID: 38086100. doi:10.1016/j.talanta.2023.125519
  • Li X, Mak VCY, Zhou Y, et al. Deregulated Gab2 phosphorylation mediates aberrant AKT and STAT3 signaling upon PIK3R1 loss in ovarian cancer. Nat Commun. 2019;10(1):716. PubMed PMID: 30755611; PubMed Central PMCID: PMCPMC6372715. doi:10.1038/s41467-019-08574-7
  • Xiang L, Gao Y, Chen S, Sun J, Wu J, Meng X. Therapeutic potential of Scutellaria baicalensis Georgi in lung cancer therapy. Phytomedicine. 2022;95:153727. PubMed PMID: 34535372. doi:10.1016/j.phymed.2021.153727
  • Limanaqi F, Biagioni F, Busceti CL, Polzella M, Fabrizi C, Fornai F. Potential antidepressant effects of Scutellaria baicalensis, Hericium erinaceus and Rhodiola rosea. Antioxidants. 2020;9(3). PubMed PMID: 32178272; PubMed Central PMCID: PMCPMC7139475. doi:10.3390/antiox9030234
  • Liu QQ, Ding SK, Zhang H, Shang YZ. The molecular mechanism of Scutellaria baicalensis georgi stems and leaves flavonoids in promoting neurogenesis and improving memory impairment by the PI3K-AKT-CREB signaling pathway in rats. Comb Chem High Throughput Screen. 2022;25(5):919–933. PubMed PMID: 33966617. doi:10.2174/1386207324666210506152320
  • Shengkai D, Yazhen S. Flavonoids from stems and leaves of Scutellaria baicalensis georgi regulate the brain tau hyperphosphorylation at multiple sites induced by composited Aβ in rats. CNS Neurol Disord Drug Targets. 2022;21(4):367–374. PubMed PMID: 34455972. doi:10.2174/1871527320666210827112609
  • Dhawan G, Combs CK. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease. J Neuroinflammation. 2012;9:117. PubMed PMID: 22673542; PubMed Central PMCID: PMCPMC3388011. doi:10.1186/1742-2094-9-117
  • Portugal CC, Almeida TO, Socodato R, Relvas JB. Src family kinases (SFKs): critical regulators of microglial homeostatic functions and neurodegeneration in Parkinson’s and Alzheimer’s diseases. FEBS J. 2022;289(24):7760–7775. PubMed PMID: 34510775. doi:10.1111/febs.16197
  • Li H, Liu H, Lutz MW, Luo S. Novel genetic variants in TP37, PIK3R1, CALM1, and PLCG2 of the neurotrophin signaling pathway are associated with the progression from mild cognitive impairment to Alzheimer’s disease. J Alzheimers Dis. 2023;91(3):977–987. PubMed PMID: 36530083; PubMed Central PMCID: PMCPMC9905310. doi:10.3233/jad-220680
  • Qian XH, Liu XL, Chen SD, Tang HD. Identification of immune hub genes associated with braak stages in Alzheimer’s disease and their correlation of immune infiltration. Front Aging Neurosci. 2022;14:887168. PubMed PMID: 35619939; PubMed Central PMCID: PMCPMC9129065. doi:10.3389/fnagi.2022.887168
  • Reichenbach N, Delekate A, Plescher M, et al. Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol Med. 2019;11(2). PubMed PMID: 30617153; PubMed Central PMCID: PMCPMC6365929. doi:10.15252/emmm.201809665
  • Choi M, Kim H, Yang EJ, Kim HS. Inhibition of STAT3 phosphorylation attenuates impairments in learning and memory in 5XFAD mice, an animal model of Alzheimer’s disease. J Pharmacol Sci. 2020;143(4):290–299. PubMed PMID: 32507685. doi:10.1016/j.jphs.2020.05.009