233
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

MicroRNAs as Quality Assessment Tool in Stored Packed Red Blood Cell in Blood Banks

, ORCID Icon & ORCID Icon
Pages 99-106 | Received 29 Nov 2022, Accepted 01 Feb 2023, Published online: 08 Feb 2023

References

  • Zimrin B, Hess R. Current issues relating to the transfusion of stored red blood cells. Int J Blood Transfus. 2009;96(2):93–103.
  • Carson J, Guyatt G. AABB releases clinical practice guidelines on red blood cell transfusion and storage. J Am Med Assoc. 2021;3(1):28–32.
  • Antonelou H, Seghatchian J. Insights into red blood cell storage lesion: toward a new appreciation. Transfus Apher Sci. 2016;55(3):292–301. doi:10.1016/j.transci.2016.10.019
  • Hess R. Measures of stored red blood cell quality. Int Soc Blood Transfus. 2014;107(1):1–9.
  • Obrador R, Musulin S, Hansen B. Red blood cell storage lesion. J Vet Emerg Crit Care. 2015;25(2):187–199. doi:10.1111/vec.12252
  • Cummings A, Abelson L, Rozanski A, Sharp R. The effect of storage on ammonia, cytokine, and chemokine concentrations in feline whole blood. J Vet Emerg Crit Care. 2016;26(5):639–645. doi:10.1111/vec.12510
  • Hess R. Red cell changes during storage. Transfus Apher Sci. 2010;43(1):51–59. doi:10.1016/j.transci.2010.05.009
  • D’Alessandro A, Kriebardis G, Rinalducci S, et al. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion. 2015;55(1):205–219. doi:10.1111/trf.12804
  • Antonelou MH, Seghatchian J. Insights into red blood cell storage lesion: toward a new appreciation. Transfus Apher Sci. 2016;55(3):292–301.
  • Tzounakas VL, Kriebardis AG, Papassideri IS, Antonelou MH. Donor-variation effect on red blood cell storage lesion: a close relationship emerges. Proteomics Clin Appl. 2016;10(8):791–804. doi:10.1002/prca.201500128
  • D’Alessandro A, Fu X, Reisz JA, et al. Ethyl glucuronide, a marker of alcohol consumption, correlates with metabolic markers of oxidant stress but not with hemolysis in stored red blood cells from healthy blood donors. Transfusion. 2020;60(6):1183–1196. doi:10.1111/trf.15811
  • Stefanoni D, Fu X, Reisz JA, et al. Nicotine exposure increases markers of oxidant stress in stored red blood cells from healthy donor volunteers. Transfusion. 2020;60(6):1160–1174. doi:10.1111/trf.15812
  • Tzounakas VL, Anastasiadi AT, Drossos PV, et al. Sex-related aspects of the red blood cell storage lesion. Blood Transfus. 2021;19(3):224–236. doi:10.2450/2020.0141-20
  • D’Alessandro A, Fu X, Kanias T, et al. Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity. Haematologica. 2021;106(5):1290–1302. doi:10.3324/haematol.2020.246603
  • Tzounakas VL, Anastasiadi AT, Stefanoni D, et al. Beta thalassemia minor is a beneficial determinant of red blood cell storage lesion. Haematologica. 2022;107(1):112–125. doi:10.3324/haematol.2020.273946
  • Kanias T, Lanteri MC, Page GP, et al. Ethnicity, sex, and age are determinants of red blood cell storage and stress hemolysis: results of the REDS-III RBC-Omics study. Blood Adv. 2017;1(15):1132–1141. doi:10.1182/bloodadvances.2017004820
  • Raciti PM, Francis RO, Spitalnik PF, Schwartz J, Jhang JS. Acquired hemoglobin variants and exposure to glucose-6-phosphate dehydrogenase deficient red blood cell units during exchange transfusion for sickle cell disease in a patient requiring antigen-matched blood. J Clin Apher. 2013;28(4):325–329. doi:10.1002/jca.21255
  • Francis RO, Jhang J, Hendrickson JE, Zimring JC, Hod EA, Spitalnik SL. Frequency of glucose-6-phosphate dehydrogenase-deficient red blood cell units in a metropolitan transfusion service. Transfusion. 2013;53(3):606–611. doi:10.1111/j.1537-2995.2012.03765.x
  • Lang E, Pozdeev I, Xu C, et al. Storage of erythrocytes induces suicidal erythrocyte death. Cell Physiol Biochem. 2016;39(2):668–676. doi:10.1159/000445657
  • Qu L, Triulzi J. Clinical effects of red blood cell storage. Cancer Control. 2015;22(1):26–37. doi:10.1177/107327481502200105
  • Koch G, Figueroa I, Li L, Sabik F, Mihaljevic T, Blackstone H. Red blood cell storage: how long is too long? Ann Thorac Surg. 2013;96(5):1894–1899. doi:10.1016/j.athoracsur.2013.05.116
  • Refaai A, Blumberg N. The transfusion dilemma--weighing the known and newly proposed risks of blood transfusions against the uncertain benefits. Best Pract Res Clin Anaesthesiol. 2013;27(1):17–35. doi:10.1016/j.bpa.2012.12.006
  • Flegel A, Natanson C, Klein G. Does prolonged storage of red blood cells cause harm? Br J Haematol. 2014;165(1):3–16. doi:10.1111/bjh.12747
  • Jy W, Ricci M, Shariatmadar S, Gomez-Marin O, Horstman H, Ahn S. Microparticles in stored red blood cells as potential mediators of transfusion complications. Transfusion. 2011;51(4):886–893. doi:10.1111/j.1537-2995.2011.03099.x
  • Hod A, Brittenham M, Billote B, et al. Transfusion of human volunteers with older, stored red blood cells produces extravascular hemolysis and circulating non-transferrin-bound iron. Blood. 2011;118(25):6675–6682. doi:10.1182/blood-2011-08-371849
  • Doctor A, Spinella P. Effect of processing and storage on red blood cell function in vivo. Semin Perinatol. 2012;36(4):248–259. doi:10.1053/j.semperi.2012.04.005
  • Czubak-Prowizor K, Rywaniak J, Zbikowska M. Red blood cell supernatant increases activation and agonist-induced reactivity of blood platelets. Thromb Res. 2020;196(3):543–549. doi:10.1016/j.thromres.2020.10.023
  • Spinella C, Carroll L, Staff I, et al. Duration of red blood cell storage is associated with increased incidence of deep vein thrombosis and in hospital mortality in patients with traumatic injuries. Crit Care. 2009;13(5):R151. doi:10.1186/cc8050
  • Juffermans P, Vlaar P, Prins J, Goslings C, Binnekade M. The age of red blood cells is associated with bacterial infections in critically ill trauma patients. Blood Transfus. 2012;10(3):290–295. doi:10.2450/2012.0068-11
  • Sparrow L. Red blood cell storage and transfusion-related immunomodulation. Blood Transfus. 2010;8(3):26–30.
  • D’Alessandro A, Dzieciatkowska M, Nemkov T, Hansen KC. Red blood cell proteomics update: is there more to discover? Blood Transfus. 2017;15(2):182–187. doi:10.2450/2017.0293-16
  • Dave V, Ngo T, Pernestig A, et al. MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics. Lab Invest. 2019;99(4):452–469. doi:10.1038/s41374-018-0143-3
  • Kozomara A, Griffiths S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(1):68–73. doi:10.1093/nar/gkt1181
  • Esquela A, Slack F. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–269. doi:10.1038/nrc1840
  • Undi B, Kandi R, Gutti K. MicroRNAs as haematopoiesis regulators. Adv Hematol. 2013;20(13):695–754.
  • Friedman C, Farh K, Burge B, Bartel P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. doi:10.1101/gr.082701.108
  • Lu M, Zhang Q, Deng M, et al. An analysis of human microRNA and disease associations. PLoS One. 2008;3(10):34. doi:10.1371/journal.pone.0003420
  • Ryan P, Atreya C. Blood cell microRNAs: what are they and what future do they hold? Transfus Med Rev. 2011;25(3):247–251. doi:10.1016/j.tmrv.2011.01.005
  • Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8(2):93–103. doi:10.1038/nrg1990
  • Kim J, Inoue K, Ishii J, et al. A microRNA feedback circuit in midbrain dopamine neurons. Science. 2007;317(58):1220–1224. doi:10.1126/science.1140481
  • Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: an overview. Methods Mol Biol. 2017;1509(3):1–10.
  • Hayes J, Peruzzi P, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20(8):460–469. doi:10.1016/j.molmed.2014.06.005
  • Bratosin D, Estaquier J, Petit F, et al. Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ. 2001;8(12):1143–1156. doi:10.1038/sj.cdd.4400946
  • Chen Y, Wang Y, Telen J, Chi T. The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One. 2008;3(6):23–60.
  • Kannan M, Atreya C. Differential profiling of human red blood cells during storage for 52 selected microRNAs. Transfusion. 2010;50(7):1581–1588. doi:10.1111/j.1537-2995.2010.02585.x
  • Flatt F, Bawazir M, Bruce J. The involvement of cation leaks in the storage lesion of red blood cells. Front Physiol. 2014;5:214. doi:10.3389/fphys.2014.00214
  • Yang H, Doss F, Walzer A, et al. Angiogenin-mediated tRNA cleavage as a novel feature of stored red blood cells. Br J Haematol. 2019;185(4):760–764. doi:10.1111/bjh.15605
  • Azzouzi I, Moest H, Wollscheid B, Schmugge M, Eekels M, Speer O. Deep sequencing and proteomic analysis of the microRNA-induced silencing complex in human red blood cells. Exp Hematol. 2015;43(5):382–392. doi:10.1016/j.exphem.2015.01.007
  • Chen P, Hong J, Chi J. Discovery, genomic analysis, and functional role of the erythrocyte RNAs. Curr Pathobiol Rep. 2017;5(1):43–48. doi:10.1007/s40139-017-0124-z
  • Jian F, Peng Y, Bian M. Expression and bioinformatics analysis of key miRNAs in stored red blood cells. Transfus Med Hemother. 2022;21(3):1–8.
  • Andreasen D, Fog U, Biggs W, et al. Improved microRNA quantification in total RNA from clinical samples. Blood Transfus. 2010;50(4):6–9.
  • Zhang Y, Huang G, Yuan Z, et al. Profiling and bioinformatics analysis revealing differential circular RNA expression about storage lesion regulatory in stored red blood cells. Transfus Med Hemother. 2022;49(2):76–87. doi:10.1159/000519626
  • Sangokoya C, LaMonte G, Chi T. Isolation and characterization of microRNAs of human mature erythrocytes. Methods Mol Biol. 2010;667(3):193–203.
  • Kannan M, Kulkarni S, Atreya C. Apoptotic microRNA profiling of packed red blood cells during storage. Blood. 2009;114(22):3145–3149. doi:10.1182/blood.V114.22.3145.3145
  • Sarachana T, Kulkarni S, Atreya D. Evaluation of small noncoding RNAs in ex vivo stored human mature red blood cells: changes in noncoding RNA levels correlate with storage lesion events. Transfusion. 2015;55(11):2672–2683. doi:10.1111/trf.13235
  • Haberberger A, Kirchner B, Riedmaier I, et al. Changes in the microRNA expression profile during blood storage. BMJ Open Sport Exer Med. 2018;4(1):354–360. doi:10.1136/bmjsem-2018-000354
  • Kong Y, Tian X, He R, et al. The accumulation of exosome-associated microRNA-1246 and microRNA-150-3p in human red blood cell suspensions. J Transl Med. 2021;19(1):225–228. doi:10.1186/s12967-021-02887-2
  • Chen X, Xie X, Xing Y, Yang X, Yuan Z, Wei Y. MicroRNA dysregulation associated with red blood cell storage. Transfus Med Hemother. 2018;45(6):397–402. doi:10.1159/000489321
  • Huang H, Zhu J, Fan L, et al. MicroRNA profiling of exosomes derived from red blood cell units: implications in transfusion-related immunomodulation. Biomed Res Int. 2019;19(2):459–465.
  • Zare S, Mousavi K, Maghsudlu M, Shahabi M. miRNA96 expression level within red blood cells is probably associated with RSL indicators during the storage of red blood cell units. Transfus Apher Sci. 2021;60(3):103–122. doi:10.1016/j.transci.2021.103122
  • Vu L, Ragupathy V, Kulkarni S, Atreya C. Analysis of Argonaute 2-microRNA complexes in ex vivo stored red blood cells. Transfusion. 2017;57(12):2995–3000. doi:10.1111/trf.14325
  • Chen CZ, Li L, Lodish F, Bartel P. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303(5654):83–86. doi:10.1126/science.1091903
  • Linsley P, Schelter J, Burchard J, et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol. 2007;27(6):2240–2252. doi:10.1128/MCB.02005-06
  • Yan X, Liang H, Deng T, et al. The identification of novel targets of miR-16 and characterization of their biological functions in cancer cells. Mol Cancer. 2013;12(5):92–95. doi:10.1186/1476-4598-12-92
  • Wulczyn G, Smirnova L, Rybak A, et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB j. 2007;21(2):415–426. doi:10.1096/fj.06-6130com
  • Patrick M, Zhang C, Tao Y, et al. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. Genes Dev. 2010;24(15):1614–1619. doi:10.1101/gad.1942810
  • Rasmussen D, Simmini S, Abreu-Goodger C, et al. The miR-144/451 locus is required for erythroid homeostasis. J Exp Med. 2010;207(7):1351–1358. doi:10.1084/jem.20100458
  • Bolandghamat Pour Z, Nourbakhsh M, Mousavizadeh K, et al. Up-regulation of miR-381 inhibits NAD+ salvage pathway and promotes apoptosis in breast cancer cells. Excli J. 2019;18(6):683–696. doi:10.17179/excli2019-1431
  • Liao W, Zhang Y. MicroRNA-381 facilitates autophagy and apoptosis in prostate cancer cells via inhibiting the RELN-mediated PI3K/AKT/mTOR signaling pathway. Life Sci. 2020;254(4):117–122. doi:10.1016/j.lfs.2020.117672
  • Wan Y, Cui R, Gu J, et al. Identification of four oxidative stress-responsive microRNAs, miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p, in hepatocellular carcinoma. Oxid Med Cell Longev. 2017;2017(1):189–198. doi:10.1155/2017/5189138
  • Luo E, Chang Y, Sher Y, et al. MicroRNA-769-3p down-regulates NDRG1 and enhances apoptosis in MCF-7 cells during reoxygenation. Sci Rep. 2014;4(2):590–594. doi:10.1038/srep05908
  • Bhagirath D, Yang T, Bucay N, et al. microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res. 2018;78(7):1833–1844. doi:10.1158/0008-5472.CAN-17-2069
  • Yang Y, Hou Y, Li J, Zhang F, Du Q. Characterization of antiapoptotic microRNAs in primary Sjögren’s syndrome. Cell Biochem Funct. 2020;38(8):1111–1118. doi:10.1002/cbf.3569
  • Meerson A, Yehuda H. Leptin and insulin up-regulate miR-4443 to suppress NCOA1 and TRAF4, and decrease the invasiveness of human colon cancer cells. BMC Cancer. 2016;16(1):882–885. doi:10.1186/s12885-016-2938-1
  • Le M, Xie H, Zhou B, et al. MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol. 2009;29(19):5290–5305. doi:10.1128/MCB.01694-08
  • Luo E, Chang Y, Sher Y, et al. MicroRNA-769-3p down-regulates NDRG1 and enhances apoptosis in MCF-7 cells during reoxygenation. Sci Rep. 2014;4(1):5908–5911.
  • Liu H, Zhang Y, Zhu B, et al. MiR-203a-3p regulates the biological behaviors of ovarian cancer cells through mediating the Akt/GSK-3β/Snail signaling pathway by targeting ATM. J Ovarian Res. 2019;12(1):60–65. doi:10.1186/s13048-019-0532-2
  • Xiong J, Xing S, Dong Z, et al. miR‑654‑3p suppresses cell viability and promotes apoptosis by targeting RASAL2 in non‑small‑cell lung cancer. Mol Med Rep. 2021;23(2):78–82. doi:10.3892/mmr.2020.11721
  • Zhang H, Li H, Wang G, et al. MKL1/miR-5100/CAAP1 loop regulates autophagy and apoptosis in gastric cancer cells. Neoplasia. 2020;22(5):220–230. doi:10.1016/j.neo.2020.03.001
  • de Gonzalo-Calvo D, Pérez-Boza J, Curado J, Devaux Y. Challenges of microRNA-based biomarkers in clinical application for cardiovascular diseases. Clin Transl Med. 2022;12(2):585–587.
  • Vickers K, Palmisano B, Shoucri B, Shamburek R, Remaley A. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–433. doi:10.1038/ncb2210
  • Jian F, Peng Y, Bian M. Expression and bioinformatics analysis of key miRNAs in stored red blood cells. Transfus Med Hemother. 2022;30(3):1–8.