878
Views
9
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Screening of Antioxidant, Antibacterial, Anti-Adipogenic, and Anti-Inflammatory Activities of Five Selected Medicinal Plants of Nepal

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 93-106 | Received 12 Sep 2022, Accepted 11 Jan 2023, Published online: 02 Mar 2023

References

  • World Health Organization. WHO Traditional Medicine Strategy: 2014–2023. World Health Organization; 2013.
  • Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016;21(5):559. doi:10.3390/molecules21050559
  • Samy RP, Gopalakrishnakone P. Current status of herbal and their future perspectives. Nat Preced. 2007;2007:1 doi: 10.1038/npre.2007.1176.1.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803. doi:10.1021/acs.jnatprod.9b01285
  • Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 2015;33(8):1582–1614. doi:10.1016/j.biotechadv.2015.08.001
  • Lamichhane G, Pandeya PR, Lamichhane R, et al. Anti-obesity potential of ponciri fructus: effects of extracts, fractions and compounds on adipogenesis in 3T3-L1 preadipocytes. Molecules. 2022;27(3):676. doi:10.3390/molecules27030676
  • Urquiaga I, Leighton F. Plant polyphenol antioxidants and oxidative stress. Biol Res. 2000;33(2):55–64. doi:10.4067/S0716-97602000000200004
  • Enaru B, Socaci S, Farcas A, et al. Novel delivery systems of polyphenols and their potential health benefits. Pharmaceuticals. 2022;14(10):946. doi:10.3390/ph14100946
  • Rasouli H, Farzaei MH, Khodarahmi R. Polyphenols and their benefits: a review. Int J Food Prop. 2017;20(sup2):1700–1741 doi: 10.1080/10942912.2017.1354017.
  • Xia EQ, Deng GF, Guo YJ, Li HB. Biological activities of polyphenols from grapes. Int J Mol Sci. 2010;11(2):622–646. doi:10.3390/ijms11020622
  • De Giani A, Pagliari S, Zampolli J, et al. Characterization of the biological activities of a new polyphenol-rich extract from cinnamon bark on a probiotic consortium and its action after enzymatic and microbial fermentation on colorectal cell lines. Foods. 2022;11(20):3202. doi:10.3390/foods11203202
  • Shahed-Al-Mahmud M, Shawon M, Ahmed J, Islam T, Rahman M. In vivo anti-diarrheal activity of methanolic extract of Streblus asper leaves stimulating the Na+/K+-ATPase in Swiss albino rats. Indian J Clin Biochem. 2020;35(1):72–79. doi:10.1007/s12291-018-0781-7
  • Shahed-Al-Mahmud M, Jahan T, Islam T. Antidiarrheal activities of hydroalcoholic extract of Sida cordifolia roots in Wister albino rats. Orient Pharm Exp Med. 2018;18(1):51–58. doi:10.1007/s13596-017-0295-5
  • Denev P, Kratchanova M, Ciz M, et al. Biological activities of selected polyphenol-rich fruits related to immunity and gastrointestinal health. Food Chem. 2014;157:37–44. doi:10.1016/j.foodchem.2014.02.022
  • Lamichhane G, Pandey PR. Regulatory aspects of nutraceuticals and functional foods in Nepal. Int J Nutraceuticals Funct Foods Novel Food. 2020. doi:10.17470/NF-020-0025
  • Kunwar RM, Baral B, Luintel S, et al. Ethnomedicinal landscape: distribution of used medicinal plant species in Nepal. J Ethnobiol Ethnomed. 2022;18(1):1–11. doi:10.1186/s13002-022-00531-x
  • Farnsworth NR. Ethnopharmacology and drug development. In: Ethnobotany and the Search for New Drugs. Vol. 185. John Wiley & Sons, Ltd.; 1994:42–51.
  • Süntar I. Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochem Rev. 2020;19(5):1199–1209. doi:10.1007/s11101-019-09629-9
  • Jamshidi-Kia F, Lorigooini Z, Amini-Khoei H. Medicinal plants: past history and future perspective. J HerbMed Pharmacol. 2018;7(1):1–7. doi:10.15171/jhp.2018.01
  • Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect. 2001;109(suppl 1):69–75. doi:10.1289/ehp.01109s169
  • Singh YD, Panda MK, Satapathy KB. Ethnomedicine for drug discovery. In: Advances in Pharmaceutical Biotechnology. Springer; 2020:15–28.
  • Pandeya PR, Lamichhane R, Lamichhane G, et al. 18KHT01, a potent anti-obesity polyherbal formulation. Front Pharmacol. 2021;12. doi:10.3389/fphar.2021.807081
  • Pandeya PR, Lamichhane G, Lamichhane R, et al. Antiobesity activity of two polyherbal formulations in high-fat diet-induced obese C57BL/6J mice. Biomed Res Int. 2022;2022:1–12. doi:10.1155/2022/9120259
  • Pandeya PR, Lamichhane R, Lee K-H, Lamichhane G, Kim S-G, Jung H-J. Efficacy of a novel herbal formulation (F2) on the management of obesity: in vitro and in vivo study. Evid Based Complement Alternat Med. 2021;2021:1–14. doi:10.1155/2021/8854915
  • Pandeya PR, Lee K-H, Lamichhane R, Lamichhane G, Poudel A, Jung H-J. Evaluation of anti-obesity activity of an herbal formulation (F2) in DIO mice model and validation of UPLC-DAD method for quality control. Appl Sci. 2021;11(16):7404. doi:10.3390/app11167404
  • Sati SC, Sati N, Sati OP. Bioactive constituents and medicinal importance of genus Alnus. Pharmacogn Rev. 2011;5(10):174. doi:10.4103/0973-7847.91115
  • Kumar MBS, Kumar MCR, Bharath AC, et al. Screening of selected biological activities of Artocarpus lakoocha Roxb (Moraceae) fruit pericarp. J Basic Clin Pharm. 2010;1(4):239.
  • Sathiyaraj G, Muthukumar T, Ravindran KC. Ethnomedicinal importance of fern and fern allies traditionally used by tribal people of Palani Hills (Kodaikanal), Western Ghats, South India. J Med Herbs Ethnomed. 2015;1:4–9. doi:10.5455/jmhe.2015-07-08
  • Pande PC, Tiwari L, Pande HC. Ethnoveterinary Plants of Uttaranchal- A Review. CSIR; 2007.
  • Ferdous MR, Ashrafudolla M, Hossain MS, Bellah SF. Evaluation of antioxidant, analgesic and antidiarrheal activities of methanolic extract of Litsea monopetala (roxb.) leaves. Clin Pharmacol Biopharm. 2018;7(3):185. doi:10.4172/2167-065X.1000185
  • Adhikari M, Thapa R, Kunwar RM, Devkota HP, Poudel P. Ethnomedicinal uses of plant resources in the Machhapuchchhre rural municipality of Kaski District, Nepal. Medicines. 2019;6(2):69. doi:10.3390/medicines6020069
  • Subba B, Basnet P. Antimicrobial activity of some medicinal plants from east and central part of Nepal. Int J Appl Sci Biotechnol. 2014;2(1):88–92. doi:10.3126/ijasbt.v2i1.9697
  • Joshi AR, Joshi K. Indigenous knowledge and uses of medicinal plants by local communities of the Kali Gandaki Watershed Area, Nepal. J Ethnopharmacol. 2000;73(1–2):175–183. doi:10.1016/S0378-8741(00)00301-9
  • Yadav D, Kushwaha V, Saxena K, Verma R, Murthy PK, Gupta MM. Diarylheptanoid compounds from Alnus nepalensis express in vitro and in vivo antifilarial activity. Acta Trop. 2013;128(3):509–517. doi:10.1016/j.actatropica.2013.07.015
  • Likhitwitayawuid K. Oxyresveratrol: sources, productions, biological activities, pharmacokinetics, and delivery systems. Molecules. 2021;26(14):4212. doi:10.3390/molecules26144212
  • Arfan M, Amin H, Kosinska A, Karamac M, Amarowicz R. Antioxidant activity of phenolic fractions of Litsea monopetala [Persimon-leaved Litsea] bark extract. Pol J Food Nutr Sci. 2008;58(2):1.
  • Wu Z-Y, Li H-Z, Wang W-G, et al. Lyonin A, a new 9, 10-secograyanotoxin from Lyonia ovalifolia. Chem Biodivers. 2011;8(6):1182–1187. doi:10.1002/cbdv.201000188
  • Bhatnagar S, Sahoo S, Mohapatra AK, Behera DR. Phytochemical analysis, antioxidant and cytotoxic activity of medicinal plant Combretum roxburghii (Family: Combretaceae). Int J Drug Dev Res. 2012;4(1):193–202.
  • Michiu D, Socaciu M-I, Fogarasi M, et al. Implementation of an analytical method for spectrophotometric evaluation of total phenolic content in essential oils. Molecules. 2022;27(4):1345. doi:10.3390/molecules27041345
  • Mammen D, Daniel M. A critical evaluation on the reliability of two aluminum chloride chelation methods for quantification of flavonoids. Food Chem. 2012;135(3):1365–1368. doi:10.1016/j.foodchem.2012.05.109
  • Rahman M, Islam M, Biswas M, Khurshid Alam AHM. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes. 2015;8(1):1–9. doi:10.1186/s13104-015-1618-6
  • Tekwu EM, Pieme AC, Beng VP. Investigations of antimicrobial activity of some Cameroonian medicinal plant extracts against bacteria and yeast with gastrointestinal relevance. J Ethnopharmacol. 2012;142(1):265–273. doi:10.1016/j.jep.2012.05.005
  • Alhallaf W, Perkins LB. The anti-inflammatory properties of chaga extracts obtained by different extraction methods against LPS-Induced RAW 264.7. Molecules. 2022;27(13):4207. doi:10.3390/molecules27134207
  • Tan HY, Tse IMY, Li ETS, Wang M. Oxyresveratrol supplementation to C57bl/6 mice fed with a high-fat diet ameliorates obesity-associated symptoms. Nutrients. 2017;9(2):147. doi:10.3390/nu9020147
  • Buddhisuharto AK, Pramastya H, Insanu M, Fidriann I. An updated review of phytochemical compounds and pharmacology activities of Artocarpus genus. Biointerface Res Appl Chem. 2021;11:14898–14905.
  • Khanal S, Bhatt BD. Study on biological activity of Litsea monopetala from Panchthar district of Nepal. J Inst Sci Technol. 2020;25(2):113–118. doi:10.3126/jist.v25i2.33747
  • Wang Y-S, Wen Z-Q, Li B-T, Zhang H-B, Yang J-H. Ethnobotany, phytochemistry, and pharmacology of the genus Litsea: an update. J Ethnopharmacol. 2016;181:66–107. doi:10.1016/j.jep.2016.01.032
  • Yadav D, Singh SC, Verma RK, et al. Antifilarial diarylheptanoids from Alnus nepalensis leaves growing in high altitude areas of Uttarakhand, India. Phytomedicine. 2013;20(2):124–132. doi:10.1016/j.phymed.2012.10.017
  • Vanucci-Bacqué C, Bedos-Belval F. Anti-inflammatory activity of naturally occuring diarylheptanoids- A review. Bioorg Med Chem. 2021;31:115971. doi:10.1016/j.bmc.2020.115971
  • Saxena A, Yadav D, Maurya AK, et al. Diarylheptanoids from Alnus nepalensis attenuates LPS-induced inflammation in macrophages and endotoxic shock in mice. Int Immunopharmacol. 2016;30:129–136. doi:10.1016/j.intimp.2015.12.002
  • Saxena A, Yadav D, Mohanty S, et al. Diarylheptanoids rich fraction of Alnus nepalensis attenuates malaria pathogenesis: in-vitro and in-vivo study. Phytother Res. 2016;30(6):940–948. doi:10.1002/ptr.5596
  • Sandouk T, Reda D, Hofmann C. Antidiabetic agent pioglitazone enhances adipocyte differentiation of 3T3-F442A cells. Am J Physiol Cell Physiol. 1993;264(6):C1600–C1608. doi:10.1152/ajpcell.1993.264.6.C1600
  • Shang W, Yang Y, Jiang B, et al. Ginsenoside Rb1 promotes adipogenesis in 3T3-L1 cells by enhancing PPARγ2 and C/EBPα gene expression. Life Sci. 2007;80(7):618–625. doi:10.1016/j.lfs.2006.10.021
  • Zhao D-R, Su L-H, Li R-T, Chen X-Q, Li H-M. Chemical constituents from the twigs and leaves of Lyonia ovalifolia. Biochem Syst Ecol. 2018;78:1–4. doi:10.1016/j.bse.2018.02.006
  • Zhang H, Zheng X, Zheng G, Teng Y, Zhou J, Yao G. Chemical constituents from the leaves of Lyonia ovalifolia var. hebecarpa. Biochem Syst Ecol. 2020;92:104129. doi:10.1016/j.bse.2020.104129
  • Hussain N, Hameed A, Ahmad MS, et al. New iridoids from Lyonia ovalifolia and their anti-hyperglycemic effects in mice pancreatic islets. Fitoterapia. 2018;131:168–173. doi:10.1016/j.fitote.2018.08.016
  • Negi R, Negi YK, Uniyal V, Saxena S, Bisht S. Phytochemical analysis and antibacterial activity of three indigenous plants of Garhwal Himalaya against some pathogenic microorganisms. J Pharm Res. 2012;5(3):1583–1586.
  • Lv X-J, Li Y, Ma S-G, et al. Bioactive megastigmane glucosides and monoterpenes from Lyonia ovalifolia. J Asian Nat Prod Res. 2019;21(6):559–572. doi:10.1080/10286020.2018.1509313