180
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Effect of Physalis angulata L. Administration on Gene Expressions Related to Lung Fibrosis Resolution in Mice-Induced Bleomycin

, & ORCID Icon
Pages 49-60 | Received 14 Sep 2023, Accepted 05 Jan 2024, Published online: 31 Jan 2024

References

  • Venosa A. Senescence in pulmonary fibrosis: between aging and exposure. Front Med. 2020;7:1–22.
  • Tao N, Li K, Liu J, Fan G, Sun T. Liproxstatin-1 alleviates bleomycin-induced alveolar epithelial cells injury and mice pulmonary fibrosis via attenuating inflammation, reshaping redox equilibrium, and suppressing ROS/p53/α-SMA pathway. Biochem Biophys Res Commun. 2021;551:133–139. doi:10.1016/j.bbrc.2021.02.127
  • Du Bois RM. Strategies for treating idiopathic pulmonary fibrosis. Nat Rev Drug Discov. 2010;9(2):129–140. doi:10.1038/nrd2958
  • Luppi F, Spagnolo P, Cerri S, Richeldi L. The big clinical trials in idiopathic pulmonary fibrosis. Curr Opin Pulm Med. 2012;18(5):428–432. doi:10.1097/MCP.0b013e3283567ff9
  • Shaikh SB, Prabhu A, Bhandary YP. Targeting anti-aging protein sirtuin (Sirt) in the diagnosis of idiopathic pulmonary fibrosis. J Cell Biochem. 2019;120(5):6878–6885. doi:10.1002/jcb.28033
  • Richeldi L, du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–2082. doi:10.1056/NEJMoa1402584
  • King TE, Bradford WZ, Castro-Bernardini S, et al. A Phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–2092. doi:10.1056/NEJMoa1402582
  • Glasser SW, Hagood JS, Wong S, Taype CA, Madala SK, Hardie WD. Mechanisms of lung fibrosis resolution. Am J Pathol. 2016;186(5):1066–1077. doi:10.1016/j.ajpath.2016.01.018
  • Kinnula VL, Fattman CL, Tan RJ, Oury TD. Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy. Am J Respir Crit Care Med. 2005;172(4):417–422. doi:10.1164/rccm.200501-017PP
  • Ma MW, Wang J, Dhandapani KM, Brann DW. Deletion of NADPH oxidase 4 reduces severity of traumatic brain injury. Free Radic Biol Med. 2018;117(December 2017):66–75. doi:10.1016/j.freeradbiomed.2018.01.031
  • Cheresh P, Kim S, Tulasiram S, Kamp D. Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta. 2013;1832(7):1028–1040. doi:10.1016/j.bbadis.2012.11.021
  • Carnesecchi S, Deffert C, Donati Y, et al. A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid Redox Signal. 2011;15(3):607–619. doi:10.1089/ars.2010.3829
  • Penke LR, Speth JM, Huang SK, Fortier SM, Baas J, Peters-Golden M. KLF4 is a therapeutically tractable brake on fibroblast activation that promotes resolution of pulmonary fibrosis. JCI Insight. 2022;7(16). doi:10.1172/jci.insight.160688
  • Barratt SL, Creamer A, Hayton C, Chaudhuri N. Idiopathic pulmonary fibrosis (IPF): an overview. J Clin Med. 2018;7(8):1–21. doi:10.3390/jcm7080201
  • Van Manen MJG, Geelhoed JJM, Tak NC, Wijsenbeek MS. Optimizing quality of life in patients with idiopathic pulmonary fibrosis. Ther Adv Respir Dis. 2017;11(3):157–169. doi:10.1177/1753465816686743
  • Pillai JR, Wali AF, Menezes GA, et al. Chemical composition analysis, cytotoxic, antimicrobial and antioxidant activities of physalis angulata l.: a comparative study of leaves and fruit. Molecules. 2022;27(5):1.
  • Anh H Le T, Le Ba V, Do TT, et al. Bioactive compounds from physalis angulata and their anti-inflammatory and cytotoxic activities. J Asian Nat Prod Res. 2021;23(8):809–817. doi:10.1080/10286020.2020.1825390
  • Augustine AA, Ufuoma O. Flavonoids from the leaves of physalis angulata Linn. Planta Med. 2013;79(13):PJ5.
  • Kobayashi K, Araya J, Minagawa S, et al. Involvement of PARK2-mediated mitophagy in idiopathic pulmonary fibrosis pathogenesis. J Immunol. 2016;197(2):504–516. doi:10.4049/jimmunol.1600265
  • Fathimath Muneesa M, Shaikh SB, Jeena TM, Bhandary YP. Inflammatory mediators in various molecular pathways involved in the development of pulmonary fibrosis. Int Immunopharmacol. 2021;96(March):107608. doi:10.1016/j.intimp.2021.107608
  • Rieder F, Kessler SP, West GA, et al. Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol. 2011;179(5):2660–2673. doi:10.1016/j.ajpath.2011.07.042
  • Mohammadtaghvaei N, Afarin R, Mavalizadeh F, Shakerian E, Salehipour Bavarsad S, Mohammadzadeh G. Effect of quercetin on the expression of NOXs and P-Smad3C in TGF-Β-activated hepatic stellate cell line LX-2. Hepat Mon. 2021;21(6):e116875. doi:10.5812/hepatmon.116875
  • Hecker L, Vittal R, Jones T, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15(9):1077–1081. doi:10.1038/nm.2005
  • Wang MC. Natural plant resource flavonoids as potential therapeutic drugs for pulmonary fibrosis. Heliyon. 2023;9(8):e19308. doi:10.1016/j.heliyon.2023.e19308
  • Hecker L, Logsdon NJ, Kurundkar D, et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med. 2014;6(231):231ra47. doi:10.1126/scitranslmed.3008182
  • Geng F, Xu M, Zhao L, et al. Quercetin alleviates pulmonary fibrosis in mice exposed to silica by inhibiting macrophage senescence. Front Pharmacol. 2022;13(July):1–11. doi:10.3389/fphar.2022.912029
  • Taskan MM, Gevrek F. Quercetin decreased alveolar bone loss and apoptosis in experimentally induced periodontitis model in Wistar rats. Antiinflamm Antiallergy Agents Med Chem. 2020;19(4):436–448. doi:10.2174/1871523019666200124114503
  • Steen EH, Wang X, Balaji S, Butte MJ, Bollyky PL, Keswani SG. The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis. Adv Wound Care. 2020;9(4):184–198. doi:10.1089/wound.2019.1032
  • Xi J, Zhang B, Luo F, Liu J, Yang T. Quercetin protects neuroblastoma SH-SY5Y cells against oxidative stress by inhibiting expression of krüppel-like factor 4. Neurosci Lett. 2012;527(2):115–120. doi:10.1016/j.neulet.2012.08.082
  • Redente EF, Chakraborty S, Sajuthi S, et al. Loss of fas signaling in fibroblasts impairs homeostatic fibrosis resolution and promotes persistent pulmonary fibrosis. JCI Insight. 2021;6(1):1–20. doi:10.1172/jci.insight.141618
  • Justice JN, Nambiar AM, Tchkonia T, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine. 2019;40:554–563. doi:10.1016/j.ebiom.2018.12.052
  • Phenotype TS associated S, Diseases A related. The senescence-associated secretory phenotype and age-related diseases. Biology. 2020;2020:1–16.
  • Rohmawaty E, Rosdianto AM, Usman HA, et al. Antifibrotic effect of the ethyl acetate fraction of ciplukan (Physalis angulata Linn.) in rat liver fibrosis induced by CCI4. J Appl Pharm Sci. 2021;11(12):175–182.
  • Ozaslan C, Farooq S, Onen H, Ozcan S, Bukun B, Gunal H. Germination biology of two invasive physalis species and implications for their management in arid and semi-arid regions. Sci Rep. 2017;7(1):1–12. doi:10.1038/s41598-017-17169-5
  • Amara N, Goven D, Prost F, Muloway R, Crestani B, Boczkowski J. NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFb1-induced fibroblast differentiation into myofibroblast. Thorax. 2010;65(8):733–738. doi:10.1136/thx.2009.113456
  • Cameli P, Carleo A, Bergantini L, Landi C, Prasse A, Bargagli E. Oxidant / antioxidant disequilibrium in idiopathic pulmonary fibrosis pathogenesis. Inflammation. 2019. doi:10.1007/s10753-018-00955-2
  • Jarman ER, Khambata VS, Cope C, et al. An inhibitor ofNADPH oxidase-4 attenuates established pulmonary fibrosis in a rodent disease model. Am J Respir Cell Mol Biol. 2014;50:158–169. doi:10.1165/rcmb.2013-0174OC
  • Boots AW, Veith C, Albrecht C, et al. The dietary antioxidant quercetin reduces hallmarks of bleomycin-induced lung fibrogenesis in mice. BMC Pulm Med. 2020;20(1):1–16. doi:10.1186/s12890-020-1142-x
  • Sanders YY, Liu H, Liu G, Thannickal VJ. Epigenetic mechanisms regulate NADPH oxidase-4 expression in cellular senescence. Free Radic Biol Med. 2015;79:197–205. doi:10.1016/j.freeradbiomed.2014.12.008
  • Horowitz JC, Thannickal VJ. Mechanisms for the resolution of organ fibrosis. Physiology. 2019;34(1):43–55. doi:10.1152/physiol.00033.2018
  • Anacker J, Segerer SE, Hagemann C, et al. Human decidua and invasive trophoblasts are rich sources of nearly all human matrix metalloproteinases. Mol Hum Reprod. 2011;17(10):637–652. doi:10.1093/molehr/gar033
  • Craig VJ, Quintero PA, Fyfe SE, et al. Profibrotic activities for matrix metalloproteinase-8 during bleomycin-mediated lung injury. J Immunol. 2013;190(8):4283–4296. doi:10.4049/jimmunol.1201043
  • Cabrera S, Selman M, Lonzano-Bolaños A, et al. Gene expression profiles reveal molecular mechanisms involved in the progression and resolution of bleomycin-induced lung fibrosis. Am J Physiol. 2013;304(9):L593–L601. doi:10.1152/ajplung.00320.2012
  • García-Prieto E, González-López A, Cabrera S, et al. Resistance to bleomycin-induced lung fibrosis in MMP-8 deficient mice is mediated by interleukin-10. PLoS One. 2010;5(10):e13242. doi:10.1371/journal.pone.0013242
  • García-de-alba C, Becerril C, Ruiz V, et al. Expression of matrix metalloproteases by fibrocytes: possible role in migration and homing. Am J Respir Crit Care Med. 2010;182(9):1144–1152. doi:10.1164/rccm.201001-0028OC
  • Lakhanpal P, Rai DK. Quercetin: a Versatile Flavonoid. Int J Med Update. 2007;2(2):22–37. doi:10.4314/ijmu.v2i2.39851
  • Meilawaty Z, Shita ADP, Kuncaraningtyas PL, Dharmayanti AWS, Hamzah Z. Potensi ekstrak daun singkong (Manihot esculenta Crantz) terhadap ekspresi MMP-8 fibroblas gingiva pada model tikus dengan disfungsi ovarium dan periodontitis. Potential of cassava (Manihot esculenta Crantz) leaf extract on the MMP-8 expression of. J Kedokt Gigi Univ Padjadjaran. 2020;32(2):105. doi:10.24198/jkg.v32i2.27466
  • McKleroy W, Lee TH, Atabai K. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am J Physiol. 2013;304(11):L709–L721. doi:10.1152/ajplung.00418.2012
  • Song F, Wisithphrom K, Zhou J, Windsor LJ. Matrix metalloproteinase dependent and independent collagen degradation. Front Biosci. 2006;11:3100–3120. doi:10.2741/2036
  • Lauer-Fields JL, Juska D, Fields GB. Matrix metalloproteinases and collagen catabolism. Biopolym. 2002;66(1):19–32. doi:10.1002/bip.10201
  • Stultz CM. Localized unfolding of collagen explains collagenase cleavage near imino-poor sites. J Mol Biol. 2002;319(5):997–1003. doi:10.1016/S0022-2836(02)00421-7
  • Ghaleb AM, Yang VW, Brook S, Brook S. Krüppel-like factor 4 (KLF4): what we currently know. Cancer Res. 2017;611:27–37.
  • Farrugia MK, Vanderbilt DB, Salkeni MA, et al. Kruppellike pluripotency factors as modulators of cancer cell therapeutic responses. Cancer Res. 2016;76(7):1677–1682. doi:10.1158/0008-5472.CAN-15-1806
  • Zhang Y, Wang Y, Liu Y, Wang N, Qi Y, Du J. Krüppel-like factor 4 transcriptionally regulates TGF-β1 and contributes to cardiac myofibroblast differentiation. PLoS One. 2013;8:1.
  • Hu B, Wu Z, Liu T, Ullenbruch MR, Jin H, Phan SH. Gut-enriched kru¨ppel-like factor interaction with Smad3. Am J Respir Cell Mol Biol. 2006;36:78–84. doi:10.1165/rcmb.2006-0043OC
  • Chandran RR, Xie Y, Gallardo-Vara E, et al. Distinct roles of KLF4 in mesenchymal cell subtypes during lung fibrogenesis. Nat Commun. 2021;12(1):1–17. doi:10.1038/s41467-021-27499-8
  • Levoin N, Jean M, Legembre P. CD95 structure, aggregation and cell signaling. Front Cell Dev Biol. 2020;8(May):1–13. doi:10.3389/fcell.2020.00314
  • Ranger AM, Malynn BA, Korsmeyer SJ. Mouse models of cell death. Nat Genet. 2001;28(2):113–118. doi:10.1038/88815
  • Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 1995;14(22):5579–5588. doi:10.1002/j.1460-2075.1995.tb00245.x
  • Golan-Gerstl R, Wallach-Dayan SB, Amir G, Breuer R. Epithelial cell apoptosis by fas ligand-positive myofibroblasts in lung fibrosis. Am J Respir Cell Mol Biol. 2007;36(3):270–275. doi:10.1165/rcmb.2006-0133OC
  • Desmouliere A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol. 1995;146(1):56–66.
  • Iredale JP, Benyon C, Pickering J, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest. 1998;102(3):538–549. doi:10.1172/JCI1018
  • Luo JL, Kamata H, Karin M. The anti-death machinery in IKK/NF-κB signaling. J Clin Immunol. 2005;25:541–550. doi:10.1007/s10875-005-8217-6
  • Kulasekaran P, Scavone CA, Rogers DS, Arenberg DA, Thannickal VJ, Horowitz JC. Endothelin-1 and transforming growth factor-β1 independently induce fibroblast resistance to apoptosis via AKT activation. Am J Respir Cell Mol Biol. 2009;41(4):484–493. doi:10.1165/rcmb.2008-0447OC
  • Hohmann MS, Habiel DM, Coelho AL, Verri WA, Hogaboam CM. Quercetin enhances ligand-induced apoptosis in senescent idiopathic pulmonary fibrosis fibroblasts and reduces lung fibrosis in vivo. Am J Respir Cell Mol Biol. 2019;60(1):28–40. doi:10.1165/rcmb.2017-0289OC
  • Ryu S, Park S, Lim W, Song G. Quercetin augments apoptosis of canine osteosarcoma cells by disrupting mitochondria membrane potential and regulating PKB and MAPK signal transduction. J Cell Biochem. 2019;120(10):17449–17458. doi:10.1002/jcb.29009
  • Schafer MJ, White TA, Iijima K, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017;8:14532. doi:10.1038/ncomms14532