731
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

A Review of the Therapeutic Targeting of SCN9A and Nav1.7 for Pain Relief in Current Human Clinical Trials

ORCID Icon, , , , , , & show all
Pages 1487-1498 | Received 09 Sep 2022, Accepted 14 Mar 2023, Published online: 04 May 2023

References

  • Drenth JP, Waxman SG. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest. 2007;117(12):3603–3609. doi:10.1172/JCI33297
  • Wang Y, Mi J, Lu K, Lu Y, Wang K. Comparison of gating properties and use-dependent block of Nav1.5 and Nav1.7 channels by anti-arrhythmics mexiletine and lidocaine. PLoS One. 2015;10(6):e0128653. doi:10.1371/journal.pone.0128653
  • Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev. 2005;57(4):397–409. doi:10.1124/pr.57.4.4
  • Klugbauer N, Lacinova L, Flockerzi V, Hofmann F. Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells. EMBO J. 1995;14(6):1084–1090. doi:10.1002/j.1460-2075.1995.tb07091.x
  • Plummer NW, Meisler MH. Evolution and diversity of mammalian sodium channel genes. Genomics. 1999;57(2):323–331. doi:10.1006/geno.1998.5735
  • Marchi M, D’Amato I, Andelic M, et al. Congenital insensitivity to pain: a novel mutation affecting a U12-type intron causes multiple aberrant splicing of SCN9A. Pain. 2022;163(7):e882–e887. doi:10.1097/j.pain.0000000000002535
  • Chen L, Effraim PR, Carrara J, et al. Pharmacological characterization of a rat Nav1.7 loss-of-function model with insensitivity to pain. Pain. 2020;161(6):1350–1360. doi:10.1097/j.pain.0000000000001807
  • Hameed S. Nav1.7 and Nav1.8: role in the pathophysiology of pain. Mol Pain. 2019;15:1744806919858801. doi:10.1177/1744806919858801
  • Thau L, Reddy V, Singh P. Anatomy, Central Nervous System. Available from. Treasure Island (FL): StatPearls Publishing;2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK542179/. Accessed March 15, 2023.
  • Gadhvi M, Waseem M. Physiology, Sensory System. Treasure Island (FL): StatPearls Publishing; 2022. Available from https://www.ncbi.nlm.nih.gov/books/NBK547656/. Accessed March 15, 2023.
  • Osterweis M, Kleinman A, Mechanic D, editors,; Institute of Medicine (US) Committee on Pain, Disability, and Chronic Illness Behavior. Pain and Disability: Clinical, Behavioral, and Public Policy Perspectives. Washington (DC): National Academies Press (US); 1987. 7. Available from https://www.ncbi.nlm.nih.gov/books/NBK219252/. Accessed March 15, 2023.
  • Yam MF, Loh YC, Tan CS, Khadijah Adam S, Abdul Manan N, Basir R. General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int J Mol Sci. 2018;19(8):2164.
  • Cummins TR, Sheets PL, Waxman SG. The roles of sodium channels in nociception: implications for mechanisms of pain. Pain. 2007;131(3):243–257. doi:10.1016/j.pain.2007.07.026
  • Chen Z, Zhang H, Dai SM. Charcot ankle, congenital insensitivity to pain & a mutation in the SCN9A gene. QJM. 2022;5:hcac117.
  • Świtała WW, Szymańska-Adamcewicz O, Jurga S, Pilchowska-Ujma E, Krakowiak J. Genetic aspects of, pain and its variability in the human population. Ann Agric Environ Med. 2021;8(4):569–574. doi:10.26444/aaem/134151
  • Stępień A, Sałacińska D, Staszewski J, Durka-Kęsy M, Dobrogowski J. Paroxysmal extreme pain disorder in family with c.3892G > T (p.Val1298Phe) in the SCN9A gene mutation - case report. BMC Neurol. 2020;20(1):182. doi:10.1186/s12883-020-01770-9
  • Hisama FM, Dib-Hajj SD, Waxman SG. SCN9A Neuropathic Pain Syndromes. In: Adam MP, Mirzaa GM, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 2006:1993–2022.
  • Rajasekharan S, Martens L, Domingues L, Cauwels R. SCN9A channelopathy associated autosomal recessive congenital indifference to pain. A case report. Eur J Paediatr Dent. 2017;18(1):66–68. doi:10.23804/ejpd.2017.18.01.14
  • Schon KR, Parker APJ, Woods CG. Congenital Insensitivity to Pain Overview. In: Adam MP, Mirzaa GM, Pagon RA, et al.editors.GeneReviews® [Internet].Seattle: University of Washington, Seattle; 2018:1993–2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK481553/. Accessed March 15, 2023.
  • Cox JJ, Reimann F, Nicholas AK, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006;444(7121):894–898.
  • Marchi M, Provitera V, Nolano M, et al. A novel SCN9A splicing mutation in a compound heterozygous girl with congenital insensitivity to pain, hyposmia and hypogeusia. J Peripher Nerv Syst. 2018;23(3):202–206. doi:10.1111/jns.12280
  • Ravichandra KS, Kandregula CR, Koya S, Lakhotia D Congenital Insensitivity to Pain and Anhydrosis: Diagnostic and Therapeutic Dilemmas revisited. Int J Clin Pediatr Dent. 2015;8(1):75–81.
  • Kelley MA, Oaklander AL. (2020) Association of small-fiber polyneuropathy with three previously unassociated rare missense SCN9A variants. Can J Pain. 2020;4(1):19–29. doi:10.1080/24740527.2020.1712652
  • Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment. Physiol Rev. 2021;101(1):259–301. doi:10.1152/physrev.00045.2019
  • Kurban M, Wajid M, Shimomura Y, Christiano AM. (2010) A nonsense mutation in the SCN9A gene in congenital insensitivity to pain. Dermatology. 2010;221(2):179–183. doi:10.1159/000314692
  • Jha SK, Karna B, Goodman MB. Erythromelalgia. Available from. Treasure Island (FL): StatPearls Publishing; 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557787/. Accessed March 15, 2023.
  • Kang BC, Nam DJ, Ahn EK, Yoon DM, Cho JG. Secondary erythromelalgia - a case report. Int J Med. 2013:26(3);299–302.
  • Waxman SG. Alabama to Beijing and Back: the Search for a Pain Gene. Cerebrum. 2018;2018:cer-02–18.
  • Latessa V. Erythromelalgia: a rare microvascular disease. J Vasc Nurs. 2010;28(2):67–71. doi:10.1016/j.jvn.2009.11.002
  • Kundu A, Rafiq M, Warren PS, Tobias JD. Erythromelalgia in the pediatric patient: role of computed-tomography-guided lumbar sympathetic blockade. J Pain Res. 2016;9:837–845. doi:10.2147/JPR.S110688
  • Tang Z, Chen Z, Tang B, Jiang H. Primary erythromelalgia: a review. Orphanet J Rare Dis. 2015;30(10):127. doi:10.1186/s13023-015-0347-1
  • Tham SW, Giles M. Current pain management strategies for patients with erythromelalgia: a critical review. J Pain Res. 2018;11:1689–1698. doi:10.2147/JPR.S154462
  • Arthur L, Keen K, Verriotis M, et al. Pediatric Erythromelalgia and SCN9A Mutations: systematic Review and Single-Center Case Series. J Pediatr. 2019;206(217–224.e9):217–224.e9. doi:10.1016/j.jpeds.2018.10.024
  • Reed KB, Davis MD. Incidence of erythromelalgia: a population-based study in Olmsted County, Minnesota. J Eur Acad Dermatol Venereol. 2009;23(1):13–15. doi:10.1111/j.1468-3083.2008.02938.x
  • Choi JS, Dib-Hajj SD, Waxman SG. Inherited erythermalgia. Limb pain from an S4 charge-neutral Na channelopathy. Neurology. 2006;67:1563–1567. doi:10.1212/01.wnl.0000231514.33603.1e
  • Cummins TR, Dib-Hajj SD, Waxman SG. Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J Neurosci. 2004;24::8232–8236. doi:10.1523/JNEUROSCI.2695-04.2004
  • Dib-Hajj SD, Rush AM, Cummins TR, et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain. 2005;128(Pt8):1847–1854. doi:10.1093/brain/awh514
  • Han C, Rush AM, Dib-Hajj SD, et al. Sporadic onset of erythermalgia: a gain-of-function mutation in Nav1.7. Ann Neurol. 2006;59(3):553–558. doi:10.1002/ana.20776
  • Harty TP, Dib-Hajj SD, Tyrrell L, et al. Na(V)1.7 mutant A863P in erythromelalgia: effects of altered activation and steady-state inactivation on excitability of nociceptive dorsal root ganglion neurons. J Neurosci. 2006;26(48):12566–12575. doi:10.1523/JNEUROSCI.3424-06.2006
  • Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc Natl Acad Sci U S A. 2006;103(21):8245–8250. doi:10.1073/pnas.0602813103
  • Toro CP, Lipscombe D. Erythromelalgia and Paroxysmal Extreme Pain Disorder (PEPD) Biophysics of Voltage-Gated Ion Channels. From Mol Net. 2014:377. doi:10.1016/B978-0-12-397179-1.00013-0
  • Bjeloševič M, Kušíková K, Tomko J. Paroxysmal extreme pain disorder: a very rare genetic aetiology of syncope with bizarre flushing in an infant. J Paediatr Child Health. 2021;57(6):938–940.
  • Choi JS, Boralevi F, Brissaud O, et al. Paroxysmal extreme pain disorder: a molecular lesion of peripheral neurons. Nat Rev Neurol. 2011;7(1):51–55. doi:10.1038/nrneurol.2010.162
  • Hisama FM, Dib-Hajj SD, Waxman SG SCN9A Neuropathic Pain Syndromes. [Updated 2020 Jan 23]. In: Adam M, Mirzaa G Pagon R, et al.., editors [Internet]. Seattle (WA): University of Washington, Seattle (WA).
  • Stutchfield CJ, Loh NR. Focal epilepsy presenting as a bath-induced paroxysmal event/breath-holding attack. Epilepsy Behav Case Rep. 2014;2:102–104.
  • Estacion M, Dib-Hajj SD, Benke PJ, et al. NaV1.7 gain-of-function mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J Neurosci. 2008;28(43):11079–11088. doi:10.1523/JNEUROSCI.3443-08.2008
  • Martinez-Lavin M. Fibromyalgia: when distress becomes (un)sympathetic pain. Pain Res Treat. 2012;2012:981565. doi:10.1155/2012/981565
  • de Lera Ruiz M, Kraus RL. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J Med Chem. 2015;58(18):7093–7118.
  • Zorina-Lichtenwalter K, Meloto CB, Khoury S, Diatchenko L. Genetic predictors of human chronic pain conditions. Neuroscience. 2016;338:36–62.
  • Wordliczek J, Banach M, Garlicki J, Wordliczek J, Dobrogowski J. Influence of pre- or intraoperational use of tramadol (preemptive or preventive analgesia) on tramadol requirement in the early postoperative period. Pol J Pharmacol. 2002;54(6):693–697.
  • Cannon A, Kurklinsky S, Guthrie KJ, Riegert-Johnson DL. Advanced genetic testing comes to the pain clinic to make a diagnosis of paroxysmal extreme pain disorder. Case Rep Neurol Med. 2016;2016:9212369. doi:10.1155/2016/9212369
  • Xue Y, Kremer M, Muniz Moreno MDM, et al. The human SCN9AR185H point mutation induces pain hypersensitivity and spontaneous pain in mice. Front Mol Neurosci. 2022;15::913990. doi:10.3389/fnmol.2022.913990
  • Devigili G, Rinaldo S, Lombardi R, et al. Diagnostic criteria for small fibre neuropathy in clinical practice and research. Brain. 2019;142(12):3728–3736. doi:10.1093/brain/awz333
  • Levine TD. Small fiber neuropathy: disease classification beyond pain and burning. J Cent Nerv Syst Dis. 2018;10:117957351877170. doi:10.1177/1179573518771703
  • Oaklander AL, Klein MM. (2013) Evidence of small-fiber polyneuropathy in unexplained, juvenile-onset, widespread pain syndromes. Pediatrics. 2013;131(4):e1091–e1100. doi:10.1542/peds.2012-2597
  • McDermott LA, Weir GA, Themistocleous AC, et al. Defining the Functional Role of NaV1.7 in Human Nociception. Neuron. 2019;101(5):905–919.e8.
  • He Y, Kim PY Allodynia. [ Updated 2022 Sep 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan
  • Fealey RD. Thermoregulation in neuropathies. Handb Clin Neurol. 2018;157:777–787.
  • Mozafarpour S, Chen A, Paredes Mogica JA, et al. Urodynamic autonomic bladder dysfunction in women with complex chronic pelvic pain is associated with small fiber polyneuropathy. Neurourol Urodyn. 2022;41(1):482–489. doi:10.1002/nau.24858
  • Shinu P, Morsy MA, Nair AB, et al. Novel Therapies for the Treatment of Neuropathic Pain: Potential and Pitfalls. J Clin Med. 2022;11(11):3002
  • Elsana B, Imtirat A, Yagev R, et al. Ocular manifestations among patients with congenital insensitivity to pain due to variants in PRDM12 and SCN9A genes. Am J Med Genet A. 2022;188(12):3463–3468
  • Le Cann K, Meents JE, Bhagavath Eswaran V S, et al. Assessing the impact of pain-linked Nav1.7 variants: An example of two variants with no biophysical effect. Channels (Austin). 2021;15(1):208–228.
  • Birnbaum J, DuncanT, Owoyemi, K, Wang KC, Carrino J, Chhabra A. Use of a novel high-resolution magnetic resonance neurography protocol to detect abnormal dorsal root Ganglia in Sjögren patients with neuropathic pain: case series of 10 patients and review of the literature. Medicine (Baltimore). 2014;93(3):121–134. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632907/.
  • Raasing LRM, Vogels OJM, Veltkamp M, van Swol CFP, Grutters JC. Current view of diagnosing small fiber neuropathy. J Neuromuscul Dis. 2021;8(2):185–207. doi:10.3233/JND-200490
  • Faber CG, Hoeijmakers JG, Ahn HS, et al. Gain of function Naν1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol. 2012;71(1):26–39. doi:10.1002/ana.22485
  • Blasius AL, Dubin AE, Petrus MJ, et al. Hypermorphic mutation of the voltage-gated sodium channel encoding gene Scn10a causes a dramatic stimulus-dependent neurobehavioral phenotype. Proc Natl Acad Sci USA. 2011;108(48):19413–19418
  • Vasylyev DV, Han C, Zhao P, Dib-Hajj S, Waxman SG. Dynamic-clamp analysis of wild-type human Nav1.7 and erythromelalgia mutant channel L858H. J Neurophysiol. 2014;111(7):1429–1443.
  • Nettuwakul C, Praditsap O, Sawasdee N, et al. Loss-of-function mutations of SCN10A encoding NaV1.8 α subunit of voltage-gated sodium channel in patients with human kidney stone disease. Sci Rep. 2018;8(1):10453. doi:10.1038/s41598-018-28623-3
  • Brouwer BA, Merkies IS, Gerrits MM, Waxman SG, Hoeijmakers JG, Faber CG Painful neuropathies: the emerging role of sodium channelopathies. J Peripher Nerv Syst. 2014;19(2):53–65.
  • Themistocleous AC, Ramirez JD, Serra J, Bennett DL The clinical approach to small fibre neuropathy and painful channelopathy. Pract Neurol. 2014;14(6):368–379.
  • Fertleman CR, Baker MD, Parker KA, et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron. 2006;52(5):767–774. doi:10.1016/j.neuron.2006.10.006
  • Yang Y, Wang Y, Li S, et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet. 2004;41(3):171–174. doi:10.1136/jmg.2003.012153
  • Cojocaru M, Cojocaru IM, Silosi I. Multiple autoimmune syndrome. Mædica. 2010;5(2):132–134.
  • Goldberg YP, Price N, Namdari R, et al. Treatment of Na(v)1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain. 2012;153(1):80–85.
  • National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 49836093, Funapide. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Funapide. Accessed March 15, 2023.
  • Cao L, McDonnell A, Nitzsche A, et al. Pharmacological reversal of a pain phenotype in Ipsc-derived sensory neurons and patients with inherited erythromelalgia. Sci Transl Med. 2016;8(335):335ra56.
  • Alexandrou AJ, Brown AR, Chapman ML, et al. Subtype-selective small molecule inhibitors reveal a fundamental role for Nav1.7 in nociceptor electrogenesis, axonal conduction and presynaptic release. PLoS One. 2016;11(4):e0152405. doi:10.1371/journal.pone.0152405
  • Bagal SK, Chapman ML, Marron BE, Prime R, Storer RI, Swain NA. Recent progress in sodium channel modulators for pain. Bioorg Med Chem Lett. 2014;24(16):3690–3699. doi:10.1016/j.bmcl.2014.06.038
  • Martz L. Nav-i-gating antibodies for pain. Sci Business Exchange. 2014;7(23):662.
  • McMahon SB, Koltzenburg M, Tracey I, Turk D. Wall & Melzack’s Textbook of Pain. Elsevier Health Sciences; 2013:508.
  • McDonnell A, Collins S, Ali Z, et al. Efficacy of the Nav1.7 blocker PF-05089771 in a randomised, placebo-controlled, double-blind clinical study in subjects with painful diabetic peripheral neuropathy. Pain. 2018;159(8):1465–1476. doi:10.1097/j.pain.0000000000001227
  • Siebenga P, van Amerongen G, Hay JL, et al. Lack of detection of the analgesic properties of PF-05089771, a selective Nav 1.7 inhibitor, using a battery of pain models in healthy subjects. Clin Transl Sci. 2020;13(2):318–324. doi:10.1111/cts.12712
  • Jones HM, Butt RP, Webster RW, et al. Clinical Micro-Dose Studies to Explore the Human Pharmacokinetics of Four Selective Inhibitors of Human Nav1.7 Voltage-Dependent Sodium Channels. Clin Pharmacokinet. 2016;55(7):875–887.
  • Dunbar J, Versavel M, Zhao Y, et al. Evaluation of the Pharmacokinetic Interaction Between the Voltage- and Use-Dependent Nav1.7 Channel Blocker Vixotrigine and Carbamazepine in Healthy Volunteers. Clin Pharmacol Drug Dev. 2020;9(1):62–73.
  • Mann N, King T, Murphy R Review of primary and secondary erythromelalgia. Clin Exp Dermatol. 2019;44(5):477–482.
  • Abdelsayed M, Sokolov S Voltage-gated sodium channels: pharmaceutical targets via anticonvulsants to treat epileptic syndromes. Channels (Austin). 2013;7(3):146–152.
  • Labau JIR, Estacion M, Tanaka BS, et al. Differential effect of lacosamide on Nav1.7 variants from responsive and non-responsive patients with small fibre neuropathy. Brain. 2020;143(3):771–782. doi:10.1093/brain/awaa016
  • Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482.
  • Moreno AM, Alemán F, Catroli GF, et al. Long-lasting analgesia via targeted in situ repression of NaV1.7 in mice. Sci Transl Med. 2021;3(584):eaay9056. doi:10.1126/scitranslmed.aay9056
  • Thaci B, Ulasov IV, Wainwright DA, Lesniak MS. The challenge for gene therapy: innate immune response to adenoviruses. Oncotarget. 2011;2(3):113–121. doi:10.18632/oncotarget.231
  • Athanasopoulos T, Munye MM, Yáñez-Muñoz RJ. Nonintegrating gene therapy vectors. Hematol Oncol Clin North Am. 2017;31(5):753–770. doi:10.1016/j.hoc.2017.06.007
  • Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M. Viral vectors: a look back and ahead on gene transfer technology. New Microbiol. 2013;36(1):1–22.
  • Lee CS, Bishop ES, Zhang R, et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 2017;4(2):43–63. doi:10.1016/j.gendis.2017.04.001
  • Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122(1):23–36. doi:10.1182/blood-2013-01-306647