391
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Cytotoxicity of Local Anesthetics on Bone, Joint, and Muscle Tissues: A Narrative Review of the Current Literature

, , &
Pages 611-621 | Received 19 Nov 2022, Accepted 30 Jan 2023, Published online: 27 Feb 2023

References

  • Duellman TJ, Gaffigan C, Milbrandt JC, et al. Multi-modal, pre-emptive analgesia decreases the length of hospital stay following total joint arthroplasty. Orthopedics. 2009;32(3):167.
  • Hofmann P, Metterlein T, Bollwein G, et al. The myotoxic effect of bupivacaine and ropivacaine on myotubes in primary mouse cell culture and an immortalized cell line. Anesth Analg. 2013;117(3):634–640. doi:10.1213/ANE.0b013e31829e4197
  • Metterlein T, Hoffmann P, Spath R, et al. In vitro myotoxic effects of bupivacaine on rhabdomyosarcoma cells, immortalized and primary muscle cells. Cancer Cell Int. 2015;15:75. doi:10.1186/s12935-015-0229-6
  • Ling X, Ma X, Kuang X, et al. Lidocaine inhibits myoblast cell migration and myogenic differentiation through activation of the notch pathway. Drug Des Devel Ther. 2021;15:927–936. doi:10.2147/dddt.S290002
  • Piper SL, Kim HT. Comparison of ropivacaine and bupivacaine toxicity in human articular chondrocytes. J Bone Joint Surg Am. 2008;90(5):986–991. doi:10.2106/JBJS.G.01033
  • Jacob B, Zippelius T, Kloss N, et al. Local anesthetics’ toxicity toward human cultured chondrocytes: a comparative study between lidocaine, bupivacaine, and ropivacaine. Cartilage. 2019;10(3):364–369. doi:10.1177/1947603518758436
  • Park J, Sutradhar BC, Hong G, et al. Comparison of the cytotoxic effects of bupivacaine, lidocaine, and mepivacaine in equine articular chondrocytes. Vet Anaesth Analg. 2011;38(2):127–133. doi:10.1111/j.1467-2995.2010.00590.x
  • Adler DMT, Frellesen JF, Karlsen CV, et al. Evaluation of the in vitro effects of local anesthetics on equine chondrocytes and fibroblast-like synoviocytes. Am J Vet Res. 2021;82(6):478–486. doi:10.2460/ajvr.82.6.478
  • Nuelle CW, Cook CR, Stoker AM, et al. In vitro toxicity of local anesthetics and corticosteroids on supraspinatus tenocyte viability and metabolism. J Orthop Translat. 2017;8:20–24. doi:10.1016/j.jot.2016.08.002
  • Sung CM, Hah YS, Kim JS, et al. Cytotoxic effects of ropivacaine, bupivacaine, and lidocaine on rotator cuff tenofibroblasts. Am J Sports Med. 2014;42(12):2888–2896. doi:10.1177/0363546514550991
  • Zhang AZ, Ficklscherer A, Gulecyuz MF, et al. Cell toxicity in fibroblasts, tenocytes, and human mesenchymal stem cells-a comparison of necrosis and apoptosis-inducing ability in ropivacaine, bupivacaine, and triamcinolone. Arthroscopy. 2017;33(4):840–848. doi:10.1016/j.arthro.2016.10.026
  • Iwasaki K, Sudo H, Yamada K, et al. Cytotoxic effects of the radiocontrast agent iotrolan and anesthetic agents bupivacaine and lidocaine in three-dimensional cultures of human intervertebral disc nucleus pulposus cells: identification of the apoptotic pathways. PLoS One. 2014;9(3):e92442. doi:10.1371/journal.pone.0092442
  • Cai XY, Xiong LM, Yang SH, et al. Comparison of toxicity effects of ropivacaine, bupivacaine, and lidocaine on rabbit intervertebral disc cells in vitro. Spine J. 2014;14(3):483–490. doi:10.1016/j.spinee.2013.06.041
  • Quero L, Klawitter M, Nerlich AG, et al. Bupivacaine--the deadly friend of intervertebral disc cells? Spine J. 2011;11(1):46–53. doi:10.1016/j.spinee.2010.11.001
  • Dregalla RC, Lyons NF, Reischling PD, et al. Amide-type local anesthetics and human mesenchymal stem cells: clinical implications for stem cell therapy. Stem Cells Transl Med. 2014;3(3):365–374. doi:10.5966/sctm.2013-0058
  • Rahnama R, Wang M, Dang AC, et al. Cytotoxicity of local anesthetics on human mesenchymal stem cells. J Bone Joint Surg Am. 2013;95(2):132–137. doi:10.2106/JBJS.K.01291
  • Breu A, Scheidhammer I, Kujat R, et al. Local anesthetic cytotoxicity on human mesenchymal stem cells during chondrogenic differentiation. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):937–945. doi:10.1007/s00167-014-3312-y
  • Hussain N, McCartney CJL, Neal JM, et al. Local anesthetic-induced myotoxicity in regional anaesthesia: a systematic review and empirical analysis. Br J Anaesth. 2018;121(4):822–841. doi:10.1016/j.bja.2018.05.076
  • McFate JA, Soparkar CNS, Sami M, et al. Local anesthetic orbicularis myotoxicity: a possible unrecognized cause of post-blepharoplasty lagophthalmos. Eur J Plast Surg. 2014;37(4):201–204. doi:10.1007/s00238-013-0924-2
  • Zink W, Graf BM. Local anesthetic myotoxicity. Reg Anesth Pain Med. 2004;29(4):333–340. doi:10.1016/j.rapm.2004.02.008
  • Neal JM, Salinas FV, Choi DS. Local anesthetic-induced myotoxicity after continuous adductor canal block. Reg Anesth Pain Med. 2016;41(6):723–727. doi:10.1097/aap.0000000000000466
  • Matsen FA, Papadonikolakis A. Published evidence demonstrating the causation of glenohumeral chondrolysis by postoperative infusion of local anesthetic via a pain pump. J Bone Joint Surg. 2013;95-A. doi:10.2106/JBJS.L01104
  • Hansen BP, Beck CL, Beck EP, et al. Postarthroscopic glenohumeral chondrolysis. Am J Sports Med. 2007;35(10):1628–1634. doi:10.1177/0363546507304136
  • Kreuz PC, Steinwachs M, Angele P. Single-dose local anesthetics exhibit a type-, dose-, and time-dependent chondrotoxic effect on chondrocytes and cartilage: a systematic review of the current literature. Knee Surg Sports Traumatol Arthrosc. 2018;26(3):819–830. doi:10.1007/s00167-017-4470-5
  • Järvelä T, Järvelä S. Long-term effect of the use of a pain pump after arthroscopic subacromial decompression. Arthroscopy. 2008;24(12):1402–1406. doi:10.1016/j.arthro.2008.07.013
  • Noyes FR, Fleckenstein CM, Barber-Westin SD. The development of postoperative knee chondrolysis after intra-articular pain pump infusion of an anesthetic medication: a series of twenty-one cases. J Bone Joint Surg Am. 2012;94(16):1448–1457. doi:10.2106/JBJS.K.01333
  • Mohanty ST, Bellantuono I. Intra-femoral injection of human mesenchymal stem cells. Methods Mol Biol. 2013;976:131–141. doi:10.1007/978-1-62703-317-6_10
  • Wu T, Smith J, Nie H, et al. Cytotoxicity of local anesthetics in mesenchymal stem cells. Am J Phys Med Rehabil. 2018;97(1):50–55. doi:10.1097/PHM.0000000000000837
  • Breu A, Eckl S, Zink W, et al. Cytotoxicity of local anesthetics on human mesenchymal stem cells in vitro. Arthroscopy. 2013;29(10):1676–1684. doi:10.1016/j.arthro.2013.06.018
  • Guo X, Gong J, Yang G, et al. 罗哌卡因对大鼠骨髓间充质干细胞增殖和迁移能力的影响 [Effect of ropivacaine on proliferation and migration of rat bone marrow mesenchymal stem cells]. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2013;38(11):1152–1159. Chinese. doi:10.3969/j.issn.1672-7347.2013.11.012
  • Haasters F, Polzer H, Prall WC, et al. Bupivacaine, ropivacaine, and morphine: comparison of toxicity on human hamstring-derived stem/progenitor cells. Knee Surg Sports Traumatol Arthrosc. 2011;19(12):2138–2144. doi:10.1007/s00167-011-1564-3
  • Keck M, Zeyda M, Gollinger K, et al. Local anesthetics have a major impact on viability of preadipocytes and their differentiation into adipocytes. Plast Reconstr Surg. 2010;126(5):1500–1505. doi:10.1097/PRS.0b013e3181ef8beb
  • Cela O, Piccoli C, Scrima R, et al. Bupivacaine uncouples the mitochondrial oxidative phosphorylation, inhibits respiratory chain complexes I and III and enhances ROS production: results of a study on cell cultures. Mitochondrion. 2010;10(5):487–496. doi:10.1016/j.mito.2010.05.005
  • Grishko V, Xu M, Wilson G, et al. Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. J Bone Joint Surg Am. 2010;92(3):609–618. doi:10.2106/JBJS.H.01847
  • Irwin W, Fontaine E, Agnolucci L, et al. Bupivacaine myotoxicity is mediated by mitochondria. J Biol Chem. 2002;277(14):12221–12227. doi:10.1074/jbc.M108938200
  • Grishko VI, Ho R, Wilson GL, et al. Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes. Osteoarthritis Cartilage. 2009;17(1):107–113. doi:10.1016/j.joca.2008.05.009
  • Cai XY, Xia Y, Yang SH, et al. Ropivacaine- and bupivacaine-induced death of rabbit annulus fibrosus cells in vitro: involvement of the mitochondrial apoptotic pathway. Osteoarthritis Cartilage. 2015;23(10):1763–1775. doi:10.1016/j.joca.2015.05.013
  • Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541. doi:10.1038/s41418-017-0012-4
  • Song Z, Fan TJ. Tetracaine induces apoptosis through a mitochondrion-dependent pathway in human corneal stromal cells in vitro. Cutan Ocul Toxicol. 2018;37(4):350–358. doi:10.1080/15569527.2018.1468342
  • Nouette-Gaulain K, Capdevila X, Rossignol R. Local anesthetic ‘in-situ’ toxicity during peripheral nerve blocks: update on mechanisms and prevention. Curr Opin Anaesthesiol. 2012;25(5):589–595. doi:10.1097/ACO.0b013e328357b9e2
  • Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27(50):6434–6451. doi:10.1038/onc.2008.310
  • Johansson AC, Appelqvist H, Nilsson C, et al. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis. 2010;15(5):527–540. doi:10.1007/s10495-009-0452-5
  • Repnik U, Hafner Cesen M, Turk B. Lysosomal membrane permeabilization in cell death: concepts and challenges. Mitochondrion. 2014;19:49–57. doi:10.1016/j.mito.2014.06.006
  • Cai X, Liu Y, Hu Y, et al. ROS-mediated lysosomal membrane permeabilization is involved in bupivacaine-induced death of rabbit intervertebral disc cells. Redox Biol. 2018;18:65–76. doi:10.1016/j.redox.2018.06.010
  • Gump JM, Thorburn A. Autophagy and apoptosis: what is the connection? Trends Cell Biol. 2011;21(7):387–392. doi:10.1016/j.tcb.2011.03.007
  • Ito M, Yurube T, Kakutani K, et al. Selective interference of mTORC1/RAPTOR protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism with Akt and autophagy induction. Osteoarthritis Cartilage. 2017;25(12):2134–2146. doi:10.1016/j.joca.2017.08.019
  • Chaabane W, User SD, El-Gazzah M, et al. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp. 2013;61(1):43–58. doi:10.1007/s00005-012-0205-y
  • Jain MV, Paczulla AM, Klonisch T, et al. Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med. 2013;17(1):12–29. doi:10.1111/jcmm.12001
  • Matsunaga K, Saitoh T, Tabata K, et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol. 2009;11(4):385–396. doi:10.1038/ncb1846
  • Yang G, Li Z, Mei H, et al. Bupivacaine at clinically relevant concentrations induces toxicity in human intervertebral disc cells via the induction of autophagy in vitro. Mol Med Rep. 2019;20(1):837–843. doi:10.3892/mmr.2019.10279
  • Fan YL, Li HC, Zhao W, et al. Curcumin attenuated bupivacaine-induced neurotoxicity in SH-SY5Y cells via activation of the Akt signaling pathway. Neurochem Res. 2016;41(9):2425–2432. doi:10.1007/s11064-016-1955-4
  • Lv D, Bai Z, Yang L, et al. Lipid emulsion reverses bupivacaine-induced apoptosis of h9c2 cardiomyocytes: PI3K/Akt/GSK-3beta signaling pathway. Environ Toxicol Pharmacol. 2016;42:85–91. doi:10.1016/j.etap.2016.01.004
  • Nakamura T, Popitz-Bergez F, Birknes J, et al. The critical role of concentration for lidocaine block of peripheral nerve in vivo. Anesthesiology. 2003;99:1189–1197. doi:10.1097/00000542-200311000-00028
  • Pichiorri F, Masciullo M, Foti C, et al. Cocaine-related cervical spinal cord infarction: a case report and review of the literature. J Med Case Rep. 2022;16(1):59. doi:10.1186/s13256-021-03223-4
  • Hiroki Iida MI, Iida M. Effects of spinal analgesics on spinal circulation the safety standpoint. J Neurosurg Anesthesiol. 2008;20:180–187. doi:10.1097/ANA.0b013e31817f1861
  • Aps C, Reynolds F. The effect of concentration on vasoactivity of bupivacaine and lignocaine. Br J Anaesth. 1976;48(12):1171–1174. doi:10.1093/bja/48.12.1171
  • Hall EA, Sauer HE, Davis MS, et al. Lidocaine infusions for pain management in pediatrics. Paediatr Drugs. 2021;23(4):349–359. doi:10.1007/s40272-021-00454-2
  • Stamenkovic DM, Bezmarevic M, Bojic S, et al. Updates on wound infiltration use for postoperative pain management: a narrative review. J Clin Med. 2021;10(20):4659. doi:10.3390/jcm10204659
  • Bianconi M, Ferraro L, Traina GC, et al. Pharmacokinetics and efficacy of ropivacaine continuous wound instillation after joint replacement surgery. Br J Anaesth. 2003;91(6):830–835. doi:10.1093/bja/aeg277
  • Benoit PW. Reversible skeletal muscle damage after administration of local anesthetics with and without epinephrine. J Oral Surg. 1978;36(3):198–201.
  • Yagiela JA, Benoit PW, Fort NF. Mechanism of epinephrine enhancement of lidocaine-induced skeletal muscle necrosis. J Dent Res. 1982;61(5):686–690. doi:10.1177/00220345820610051301
  • Moser LB, Bauer C, Jeyakumar V, et al. Hyaluronic acid as a carrier supports the effects of glucocorticoids and diminishes the cytotoxic effects of local anesthetics in human articular chondrocytes in vitro. Int J Mol Sci. 2021;22(21). doi:10.3390/ijms222111503
  • Ishida O, Tanaka Y, Morimoto I, et al. Chondrocytes are regulated by cellular adhesion through CD44 and hyaluronic acid pathway. J Bone Miner Res. 1997;12(10):1657–1663. doi:10.1359/jbmr.1997.12.10.1657
  • D’Agostino G, Saporito A, Cecchinato V, et al. Lidocaine inhibits cytoskeletal remodelling and human breast cancer cell migration. Br J Anaesth. 2018;121(4):962–968. doi:10.1016/j.bja.2018.07.015
  • Li R, Xiao C, Liu H, et al. Effects of local anesthetics on breast cancer cell viability and migration. BMC Cancer. 2018;18(1):666. doi:10.1186/s12885-018-4576-2
  • Zhu J, Han S. Lidocaine inhibits cervical cancer cell proliferation and induces cell apoptosis by modulating the lncRNA-MEG3/miR-421/BTG1 pathway. Am J Transl Res. 2019;11(9):5404–5416.
  • Zhu G, Zhang L, Dan J, et al. Differential effects and mechanisms of local anesthetics on esophageal carcinoma cell migration, growth, survival and chemosensitivity. BMC Anesthesiol. 2020;20(1):126. doi:10.1186/s12871-020-01039-1
  • Zink W, Steinfeldt T, Wiesmann T. Bestandsaufnahme der Lokalanästhetika 2020 [Stocktaking of local anesthetics 2020]. Der Anaesthesist. 2020;69(5):301–313. German. doi:10.1007/s00101-020-00740-7
  • Biki B, Mascha E, Moriarty DC, et al. Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology. 2008;109(2):180–187. doi:10.1097/ALN.0b013e31817f5b73
  • Exadaktylos AK, Buggy DJ, Moriarty DC, et al. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology. 2006;105(4):660–664. doi:10.1097/00000542-200610000-00008
  • Bundscherer A, Malsy M, Bitzinger D, et al. Interaktion von Anästhetika und Analgetika mit Tumorzellen [Interaction of anesthetics and analgesics with tumor cells]. Der Anaesthesist. 2014;63(4):313–325. German. doi:10.1007/s00101-014-2310-2