380
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Role of Sensory Pathway Injury in Central Post-Stroke Pain: A Narrative Review of Its Pathogenetic Mechanism

ORCID Icon, , & ORCID Icon
Pages 1333-1343 | Received 17 Dec 2022, Accepted 07 Apr 2023, Published online: 20 Apr 2023

References

  • Watson JC, Sandroni P. Central neuropathic pain syndromes. Mayo Clin Proc. 2016;91(3):372–385. doi:10.1016/j.mayocp.2016.01.017
  • Westerlind E, Singh R, Persson HC, Sunnerhagen KS. Experienced pain after stroke: a cross-sectional 5-year follow-up study. BMC Neurol. 2020;20(1):4. doi:10.1186/s12883-019-1584-z
  • Harrison RA, Field TS. Post stroke pain: identification, assessment, and therapy. Cerebrovasc Dis. 2015;39(3–4):190–201. doi:10.1159/000375397
  • Treister AK, Hatch MN, Cramer SC, Chang EY. Demystifying poststroke pain: from etiology to treatment. PM R. 2017;9(1):63–75. doi:10.1016/j.pmrj.2016.05.015
  • Klit H, Finnerup NB, Jensen TS. Central post-stroke pain: clinical characteristics, pathophysiology, and management. Lancet Neurol. 2009;8(9):857–868. doi:10.1016/S1474-4422(09)70176-0
  • Leijon G, Boivie J, Johansson I. Central post-stroke pain--neurological symptoms and pain characteristics. Pain. 1989;36(1):13–25. doi:10.1016/0304-3959(89)90107-3
  • Şahin-Onat Ş, Ünsal-Delialioğlu S, Kulaklı F, Özel S. The effects of central post-stroke pain on quality of life and depression in patients with stroke. J Phys Ther Sci. 2016;28(1):96–101. doi:10.1589/jpts.28.96
  • Treede RD. Spinothalamic and thalamocortical nociceptive pathways. J Pain. 2002;3(2):109–114. doi:10.1054/jpai.2002.122951
  • D’Mello R, Dickenson AH. Spinal cord mechanisms of pain. Br J Anaesth. 2008;101(1):8–16. doi:10.1093/bja/aen088
  • Haroutounian S, Ford AL, Frey K, et al. How central is central poststroke pain? The role of afferent input in poststroke neuropathic pain: a prospective, open-label pilot study. Pain. 2018;159(7):1317–1324. doi:10.1097/j.pain.0000000000001213
  • Kretzschmar M, Reining M. Dorsal root ganglion stimulation for treatment of central poststroke pain in the lower extremity after medullary infarction. Pain. 2021;162(11):2682–2685. doi:10.1097/j.pain.0000000000002439
  • Heijmans L, Joosten EA. Mechanisms and mode of action of spinal cord stimulation in chronic neuropathic pain. Postgrad Med. 2020;132(sup3):17–21. doi:10.1080/00325481.2020.1769393
  • Takami K, Fujita-Hamabe W, Harada S, Tokuyama S. Aβ and Aδ but not C-fibres are involved in stroke related pain and allodynia: an experimental study in mice. J Pharm Pharmacol. 2011;63(3):452–456. doi:10.1111/j.2042-7158.2010.01231.x
  • Hyakkoku K, Umeda N, Shimada S, et al. Post-stroke pain caused by peripheral sensory hypersensitization after transient focal cerebral ischemia in rats. Brain Res. 2019;1715:35–40. doi:10.1016/j.brainres.2019.03.019
  • Dang G, Chen X, Zhao Y, et al. Alterations in the spinal cord and ventral root after cerebral infarction in non-human primates. Restor Neurol Neurosci. 2018;36(6):729–740. doi:10.3233/RNN-180854
  • Liang T, Chen XF, Yang Y, et al. Secondary damage and neuroinflammation in the spinal dorsal horn mediate post-thalamic hemorrhagic stroke pain hypersensitivity: SDF1-CXCR4 signaling mediation. Front Mol Neurosci. 2022;15(911476). doi:10.3389/fnmol.2022.911476
  • Matsuura W, Harada S, Liu K, Nishibori M, Tokuyama S. Evidence of a role for spinal HMGB1 in ischemic stress-induced mechanical allodynia in mice. Brain Res. 2018;1687:1–10. doi:10.1016/j.brainres.2018.02.026
  • Yang F, Luo WJ, Sun W, et al. SDF1-CXCR4 signaling maintains central post-stroke pain through mediation of glial-neuronal interactions. Front Mol Neurosci. 2017;10:226. doi:10.3389/fnmol.2017.00226
  • Matsuura W, Nakamoto K, Tokuyama S. The involvement of DDAH1 in the activation of spinal NOS signaling in early stage of mechanical allodynia induced by exposure to ischemic stress in mice. Biol Pharm Bull. 2019;42(9):1569–1574. doi:10.1248/bpb.b19-00371
  • Harada S, Matsuura W, Takano M, Tokuyama S. Proteomic profiling in the spinal cord and sciatic nerve in a global cerebral ischemia-induced mechanical allodynia mouse model. Biol Pharm Bull. 2016;39(2):230–238. doi:10.1248/bpb.b15-00647
  • Montoya-Filardi A, García-Junco Albacete M, Ortolá Fortes P, Carreres Polo J. Imaging secondary neuronal degeneration. Radiologia. 2022;64(2):145–155. doi:10.1016/j.rxeng.2022.01.001
  • Willis WD, Westlund KN. Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol. 1997;14(1):2–31. doi:10.1097/00004691-199701000-00002
  • Boivie J. Chapter 48 central post-stroke pain. Handb Clin Neurol. 2006;81:715–730. doi:10.1016/S0072-9752(06)80052-7
  • Garcia-Larrea L, Hagiwara K. Electrophysiology in diagnosis and management of neuropathic pain. Rev Neurol. 2019;175(1–2):26–37. doi:10.1016/j.neurol.2018.09.015
  • Garcia-Larrea L, Convers P, Magnin M, et al. Laser-evoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain. Brain. 2002;125(Pt 12):2766–2781. doi:10.1093/brain/awf275
  • Veciana M, Valls-Solé J, Rubio F, Callén A, Robles B. Laser evoked potentials and prepulse inhibition of the blink reflex in patients with Wallenberg’s syndrome. Pain. 2005;117(3):443–449. doi:10.1016/j.pain.2005.07.013
  • Casey KL, Beydoun A, Boivie J, et al. Laser-evoked cerebral potentials and sensory function in patients with central pain. Pain. 1996;64(3):485–491. doi:10.1016/0304-3959(95)00143-3
  • Convers P, Creac’h C, Beschet A, Laurent B, Garcia-Larrea L, Peyron R. A hidden mesencephalic variant of central pain. Eur J Pain. 2020;24(7):1393–1399. doi:10.1002/ejp.1588
  • Kamali A, Kramer LA, Butler IJ, Hasan KM. Diffusion tensor tractography of the somatosensory system in the human brainstem: initial findings using high isotropic spatial resolution at 3.0 T. Eur Radiol. 2009;19(6):1480–1488. doi:10.1007/s00330-009-1305-x
  • Jang SH, Seo JP. Anatomical location of the spinothalamic tract in the subcortical white matter in the human brain: a diffusion tensor imaging study. Clin Anat. 2021;34(5):736–741. doi:10.1002/ca.23709
  • Jang SH, Seo JP, Lee SJ. Diffusion tensor tractography studies of central post-stroke pain due to the spinothalamic tract injury: a mini-review. Front Neurol. 2019;10:787. doi:10.3389/fneur.2019.00787
  • Hong JH, Choi BY, Chang CH, et al. The prevalence of central poststroke pain according to the integrity of the spino-thalamo-cortical pathway. Eur Neurol. 2012;67(1):12–17. doi:10.1159/000333012
  • Wasner G, Lee BB, Engel S, McLachlan E. Residual spinothalamic tract pathways predict development of central pain after spinal cord injury. Brain. 2008;131(Pt 9):2387–2400. doi:10.1093/brain/awn169
  • Wang G, Thompson SM. Maladaptive homeostatic plasticity in a rodent model of central pain syndrome: thalamic hyperexcitability after spinothalamic tract lesions. J Neurosci. 2008;28(46):11959–11969. doi:10.1523/JNEUROSCI.3296-08.2008
  • Navarro-Orozco D, Bollu PC. Neuroanatomy, medial lemniscus (Reils band, reils ribbon). In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021.
  • Kim JS, Choi-Kwon S. Sensory sequelae of medullary infarction: differences between lateral and medial medullary syndrome. Stroke. 1999;30(12):2697–2703. doi:10.1161/01.str.30.12.2697
  • Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–979. doi:10.1126/science.150.3699.971
  • Liampas A, Velidakis N, Georgiou T, et al. Prevalence and management challenges in central post-stroke neuropathic pain: a systematic review and meta-analysis. Adv Ther. 2020;37(7):3278–3291. doi:10.1007/s12325-020-01388-w
  • Krause T, Brunecker P, Pittl S, et al. Thalamic sensory strokes with and without pain: differences in lesion patterns in the ventral posterior thalamus. J Neurol Neurosurg Psychiatry. 2012;83(8):776–784. doi:10.1136/jnnp-2011-301936
  • Sprenger T, Seifert CL, Valet M, et al. Assessing the risk of central post-stroke pain of thalamic origin by lesion mapping. Brain. 2012;135(Pt 8):2536–2545. doi:10.1093/brain/aws153
  • Vartiainen N, Perchet C, Magnin M, et al. Thalamic pain: anatomical and physiological indices of prediction. Brain. 2016;139(Pt 3):708–722. doi:10.1093/brain/awv389
  • Wasserman JK, Koeberle PD. Development and characterization of a hemorrhagic rat model of central post-stroke pain. Neuroscience. 2009;161(1):173–183. doi:10.1016/j.neuroscience.2009.03.042
  • Anttila JE, Pöyhönen S, Airavaara M. Secondary pathology of the thalamus after focal cortical stroke in rats is not associated with thermal or mechanical hypersensitivity and is not alleviated by intra-thalamic post-stroke delivery of recombinant CDNF or MANF. Cell Transplant. 2019;28(4):425–438. doi:10.1177/0963689719837915
  • Hiraga SI, Itokazu T, Hoshiko M, Takaya H, Nishibe M, Yamashita T. Microglial depletion under thalamic hemorrhage ameliorates mechanical allodynia and suppresses aberrant axonal sprouting. JCI Insight. 2020;5(3):e131801. doi:10.1172/jci.insight.131801
  • Brickley SG, Mody I. Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease. Neuron. 2012;73(1):23–34. doi:10.1016/j.neuron.2011.12.012
  • Zhou LJ, Peng J, Xu YN, et al. Microglia are indispensable for synaptic plasticity in the spinal dorsal horn and chronic pain. Cell Rep. 2019;27(13):3844–3859.e6. doi:10.1016/j.celrep.2019.05.087
  • Lu J, Guo X, Yan M, et al. P2X4R contributes to central disinhibition via TNF-α/TNFR1/GABAaR pathway in post-stroke pain rats. J Pain. 2021;22(8):968–980. doi:10.1016/j.jpain.2021.02.013
  • Kuan YH, Shih HC, Tang SC, Jeng JS, Shyu BC. Targeting P(2)X(7) receptor for the treatment of central post-stroke pain in a rodent model. Neurobiol Dis. 2015;78:134–145. doi:10.1016/j.nbd.2015.02.028
  • Inoue K, Tsuda M. Nociceptive signaling mediated by P2X3, P2X4 and P2X7 receptors. Biochem Pharmacol. 2021;187:114309. doi:10.1016/j.bcp.2020.114309
  • Fu G, Du S, Huang T, et al. FTO (Fat-mass and obesity-associated protein) participates in hemorrhage-induced thalamic pain by stabilizing toll-like receptor 4 expression in thalamic neurons. Stroke. 2021;52(7):2393–2403. doi:10.1161/STROKEAHA.121.034173
  • Leresche N, Lambert RC. GABA receptors and T-type Ca2+ channels crosstalk in thalamic networks. Neuropharmacology. 2018;136(PtA):37–45. doi:10.1016/j.neuropharm.2017.06.006
  • Yu J, Wang DS, Bonin RP, et al. Gabapentin increases expression of δ subunit-containing GABAA receptors. EBioMedicine. 2019;42:203–213. doi:10.1016/j.ebiom.2019.03.008
  • Yang Y, Yang F, Yang F, et al. Gabapentinoid insensitivity after repeated administration is associated with down-regulation of the α(2)δ-1 subunit in rats with central post-stroke pain hypersensitivity. Neurosci Bull. 2016;32(1):41–50. doi:10.1007/s12264-015-0008-3
  • Cui W, Wu H, Yu X, Song T, Xu X, Xu F. The calcium channel α2δ1 subunit: interactional targets in primary sensory neurons and role in neuropathic pain. Front Cell Neurosci. 2021;15(699731). doi:10.3389/fncel.2021.699731
  • Chen X, Li Z, Zhang B, et al. Alleviation of mechanical allodynia by 14,15-epoxyeicosatrienoic acid in a central poststroke pain model: possible role of allopregnanolone and δ-subunit-containing gamma-aminobutyric acid a receptors. J Pain. 2019;20(5):577–591. doi:10.1016/j.jpain.2018.11.006
  • Cai W, Wu S, Pan Z, et al. Disrupting interaction of PSD-95 with nNOS attenuates hemorrhage-induced thalamic pain. Neuropharmacology. 2018;141:238–248. doi:10.1016/j.neuropharm.2018.09.003
  • Frese A, Husstedt IW, Ringelstein EB, Evers S. Pharmacologic treatment of central post-stroke pain. Clin J Pain. 2006;22(3):252–260. doi:10.1097/01.ajp.0000173020.10483.13
  • Infantino R, Schiano C, Luongo L, et al. MED1/BDNF/TrkB pathway is involved in thalamic hemorrhage-induced pain and depression by regulating microglia. Neurobiol Dis. 2022;164:105611. doi:10.1016/j.nbd.2022.105611
  • Varendi K, Kumar A, Härma MA, Andressoo JO. miR-1, miR-10b, miR-155, and miR-191 are novel regulators of BDNF. Cell Mol Life Sci. 2014;71(22):4443–4456. doi:10.1007/s00018-014-1628-x
  • Krause T, Asseyer S, Taskin B, et al. The cortical signature of central poststroke pain: gray matter decreases in somatosensory, insular, and prefrontal cortices. Cereb Cortex. 2016;26(1):80–88. doi:10.1093/cercor/bhu177
  • Craig AD, Chen K, Bandy D, Reiman EM. Thermosensory activation of insular cortex. Nat Neurosci. 2000;3(2):184–190. doi:10.1038/72131
  • Nagasaka K, Takashima I, Matsuda K, Higo N. Pharmacological inactivation of the primate posterior insular/secondary somatosensory cortices attenuates thermal hyperalgesia. Eur J Pain. 2022;26(8):1723–1731. doi:10.1002/ejp.1996
  • Kadono Y, Koguchi K, Okada KI, et al. Repetitive transcranial magnetic stimulation restores altered functional connectivity of central poststroke pain model monkeys. Sci Rep. 2021;11(1):6126. doi:10.1038/s41598-021-85409-w
  • Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997;277(5328):968–971. doi:10.1126/science.277.5328.968
  • Seghier ML, Lazeyras F, Vuilleumier P, Schnider A, Carota A. Functional magnetic resonance imaging and diffusion tensor imaging in a case of central poststroke pain. J Pain. 2005;6(3):208–212. doi:10.1016/j.jpain.2004.11.004
  • Lu HC, Chang WJ, Kuan YH, Huang AC, Shyu BC. A [14C]iodoantipyrine study of inter-regional correlations of neural substrates following central post-stroke pain in rats. Mol Pain. 2015;11:9. doi:10.1186/s12990-015-0006-5
  • Head H, Holmes G. Sensory disturbances from cerebral lesions. Brain. 1911;34(2–3):102–254. doi:10.1093/brain/34.2-3.102
  • Hong JH, Bai DS, Jeong JY, et al. Injury of the spino-thalamo-cortical pathway is necessary for central post-stroke pain. Eur Neurol. 2010;64(3):163–168. doi:10.1159/000319040
  • Jang SH, Chang CH, Jung YJ, Lee HD. Delayed-onset central pain due to degeneration of ischemic transcallosal fibers after corpus callosum hemorrhage. Am J Phys Med Rehabil. 2017;96(10):e177–e180. doi:10.1097/PHM.0000000000000693
  • Jang SH, Lee J, Yeo SS. Central post-stroke pain due to injury of the spinothalamic tract in patients with cerebral infarction: a diffusion tensor tractography imaging study. Neural Regen Res. 2017;12(12):2021–2024. doi:10.4103/1673-5374.221159
  • Jang SH, Kim J, Lee HD. Delayed-onset central poststroke pain due to degeneration of the spinothalamic tract following thalamic hemorrhage: a case report. Medicine. 2018;97(50):e13533. doi:10.1097/MD.0000000000013533
  • Huang T, Fu G, Gao J, et al. Fgr contributes to hemorrhage-induced thalamic pain by activating NF-κB/ERK1/2 pathways. JCI Insight. 2020;5(20):e139987. doi:10.1172/jci.insight.139987
  • Shih HC, Kuan YH, Shyu BC. Targeting brain-derived neurotrophic factor in the medial thalamus for the treatment of central poststroke pain in a rodent model. Pain. 2017;158(7):1302–1313. doi:10.1097/j.pain.0000000000000915
  • Saini V, Guada L, Yavagal DR. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 2021;97(20 Suppl 2):S6–S16. doi:10.1212/WNL.0000000000012781