360
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Role of IL-6 and TMEM100 in Lumbar Discogenic Pain and the Mechanism of the Glycine-Serine-Threonine Metabolic Axis: A Metabolomic and Molecular Biology Study

ORCID Icon, , , , ORCID Icon, , , , , , & ORCID Icon show all
Pages 437-461 | Received 09 Dec 2022, Accepted 05 Feb 2023, Published online: 15 Feb 2023

References

  • Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N. The prevalence and clinical features of internal disc disruption in patients with chronic low back pain. Spine. 1995;20(17):1878–1883. doi:10.1097/00007632-199509000-00007
  • Pai S, Sundaram LJ. Low back pain: an economic assessment in the United States. Orthop Clin North Am. 2004;35(1):1–5. doi:10.1016/S0030-5898(03)00101-9
  • Yoo YH, Yoon CS, Eun NL, et al. Interobserver and test-retest reproducibility of T1ρ and T2 measurements of lumbar intervertebral discs by 3T magnetic resonance imaging. Korean J Radiol. 2016;17(6):903–911. doi:10.3348/kjr.2016.17.6.903
  • DePalma MJ, Ketchum JM, Saullo T. What is the source of chronic low back pain and does age play a role? Pain Med. 2011;12(2):224–233. doi:10.1111/j.1526-4637.2010.01045.x
  • Pope MH. Biomechanics of the lumbar spine. Ann Med. 1989;21(5):347–351. doi:10.3109/07853898909149219
  • Suzuki S, Fujita N, Fujii T, et al. Potential involvement of the IL-6/JAK/STAT3 pathway in the pathogenesis of intervertebral disc degeneration. Spine. 2017;42(14):E817–e24. doi:10.1097/BRS.0000000000001982
  • Pan LX, Li LY, Zhou H, et al. TMEM100 mediates inflammatory cytokines secretion in hepatic stellate cells and its mechanism research. Toxicol Lett. 2019;317:82–91. doi:10.1016/j.toxlet.2018.12.010
  • Weng HJ, Patel KN, Jeske NA, et al. Tmem100 is a regulator of TRPA1-TRPV1 complex and contributes to persistent pain. Neuron. 2015;85(4):833–846. doi:10.1016/j.neuron.2014.12.065
  • Liang X, Xie R, Hou B, et al. Feasibility study for evaluating lumbar intervertebral disc degeneration using histogram analysis of T2* values. Eur Spine J. 2020;29(10):2600–2608. doi:10.1007/s00586-020-06476-7
  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55–63. doi:10.1016/0165-0270(94)90144-9
  • Yoon C, Wook YY, Sik NH, Ho KS, Mo CJ. Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain. 1994;59(3):369–376. doi:10.1016/0304-3959(94)90023-X
  • Gigante A, Liberatori M, Gasperini ML, et al. Prevalence and clinical features of patients with the cardiorenal syndrome admitted to an internal medicine ward. Cardiorenal Med. 2014;4(2):88–94.
  • Saal JS. The role of inflammation in lumbar pain. Spine. 1995;20(16):1821–1827. doi:10.1097/00007632-199508150-00013
  • Zwart JA, Iversen OJ, Sand T, Dale LG, Unsgård G. Higher levels of antibodies against the psoriasis-associated antigen pso p27 in cerebrospinal fluid from patients with low back pain and sciatica. Spine. 1999;24(4):373–377. doi:10.1097/00007632-199902150-00016
  • Saal JS, Franson RC, Dobrow R, Saal JA, White AH, Goldthwaite N. High levels of inflammatory phospholipase A2 activity in lumbar disc herniations. Spine. 1990;15(7):674–678. doi:10.1097/00007632-199007000-00011
  • Avivi C, Cui S, Goren S, Goldstein RS. Differences in neuronal differentiation between the transient cranial (Frorieps’) and normal dorsal root ganglia. Dev Brain Res. 2002;135(1–2):19–28. doi:10.1016/S0165-3806(02)00272-9
  • Nygaard OP, Mellgren SI, Osterud B. The inflammatory properties of contained and noncontained lumbar disc herniation. Spine. 1997;22(21):2484–2488. doi:10.1097/00007632-199711010-00004
  • Harrington JF, Messier AA, Bereiter D, Barnes B, Epstein MH. Herniated lumbar disc material as a source of free glutamate available to affect pain signals through the dorsal root ganglion. Spine. 2000;25(8):929–936. doi:10.1097/00007632-200004150-00006
  • Wang ZX, Hu YG. Imaging analysis of the high-intensity zone on lumbar spine magnetic resonance images: classification, features and correlation with low back pain. J Pain Res. 2021;14:2981–2989. doi:10.2147/JPR.S332509
  • Fang D, Kong LY, Cai J, et al. Interleukin-6-mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: roles in the development of bone cancer pain in a rat model. Pain. 2015;156(6):1124–1144. doi:10.1097/j.pain.0000000000000158
  • Peritore AF, D’Amico R, Siracusa R, et al. Management of acute lung injury: palmitoylethanolamide as a new approach. Int J Mol Sci. 2021;22:11. doi:10.3390/ijms22115533
  • Klain GJ, Reifenrath WG, Black KE. Distribution and metabolism of topically applied ethanolamine. Fundam Appl Toxicol. 1985;5(6 Pt 2):S127–33. doi:10.1016/0272-0590(85)90122-8
  • Aon MA, Bernier M, Mitchell SJ, et al. Untangling determinants of enhanced health and lifespan through a multi-omics approach in mice. Cell Metab. 2020;32(1):100–16.e4. doi:10.1016/j.cmet.2020.04.018
  • Ogawa H, Gomi T, Fujioka M. Serine hydroxymethyltransferase and threonine aldolase: are they identical? Int J Biochem Cell Biol. 2000;32(3):289–301. doi:10.1016/S1357-2725(99)00113-2
  • Ogawa H, Gomi T, Fujioka, M. Serine hydroxymethyltransferase and threonine aldolase: are they identical?. Int J Biochem Cell Biol. 2000;32(3):289–301. doi:10.1016/s1357-2725(99)00113-2.
  • Tyshkovskiy A, Bozaykut P, Borodinova AA, et al. Identification and application of gene expression signatures associated with lifespan extension. Cell Metab. 2019;30(3):573–93.e8. doi:10.1016/j.cmet.2019.06.018
  • Rodríguez-Coira J, Delgado-Dolset MI, Obeso D, et al. Troubleshooting in large-scale LC-ToF-MS metabolomics analysis: solving complex issues in big cohorts. Metabolites. 2019;9:11. doi:10.3390/metabo9110247
  • Brown SA, Gaspar L. Circadian metabolomics: insights for biology and medicine. In: Sassone-Corsi P, Christen Y, editors. A Time for Metabolism and Hormones. Cham (CH): Springer; 2016.
  • Jordan SD, Lamia KA. AMPK at the crossroads of circadian clocks and metabolism. Mol Cell Endocrinol. 2013;366(2):163–169. doi:10.1016/j.mce.2012.06.017
  • Kepler CK, Markova DZ, Dibra F, et al. Expression and relationship of proinflammatory chemokine RANTES/CCL5 and cytokine IL-1β in painful human intervertebral discs. Spine. 2013;38(11):873–880. doi:10.1097/BRS.0b013e318285ae08
  • Cui H, Du X, Liu C, et al. Visfatin promotes intervertebral disc degeneration by inducing IL-6 expression through the ERK/JNK/p38 signalling pathways. Adipocyte. 2021;10(1):201–215. doi:10.1080/21623945.2021.1910155
  • Jeevakumar V, Al Sardar AK, Mohamed F, Smithhart CM, Price T, Dussor G. IL-6 induced upregulation of T-type Ca(2+) currents and sensitization of DRG nociceptors is attenuated by MNK inhibition. J Neurophysiol. 2020;124(1):274–283. doi:10.1152/jn.00188.2020
  • Dib-Hajj SD, Binshtok AM, Cummins TR, Jarvis MF, Samad T, Zimmermann K. Voltage-gated sodium channels in pain states: role in pathophysiology and targets for treatment. Brain Res Rev. 2009;60(1):65–83. doi:10.1016/j.brainresrev.2008.12.005
  • Duzhyy DE, Viatchenko-Karpinski VY, Khomula EV, Voitenko NV, Belan PV. Upregulation of T-type Ca2+ channels in long-term diabetes determines increased excitability of a specific type of capsaicin-insensitive DRG neurons. Mol Pain. 2015;11:29. doi:10.1186/s12990-015-0028-z
  • Joksimovic SL, Joksimovic SM, Tesic V, et al. Selective inhibition of Ca(V)3.2 channels reverses hyperexcitability of peripheral nociceptors and alleviates postsurgical pain. Sci Signal. 2018;11:545. doi:10.1126/scisignal.aao4425
  • Yu H, Shin SM, Wang F, et al. Transmembrane protein 100 is expressed in neurons and glia of dorsal root ganglia and is reduced after painful nerve injury. Pain Rep. 2019;4(1):e703. doi:10.1097/PR9.0000000000000703
  • Petrus M, Peier AM, Bandell M, et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain. 2007;3:40. doi:10.1186/1744-8069-3-40
  • Xu X, Guo H, Jing Z, et al. N-oleoylethanolamine reduces inflammatory cytokines and adhesion molecules in TNF-α-induced human umbilical vein endothelial cells by activating CB2 and PPAR-α. J Cardiovasc Pharmacol. 2016;68(4):280–291. doi:10.1097/FJC.0000000000000413