213
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

T Lymphocyte Subsets Profile and Toll-Like Receptors Responses in Patients with Herpes Zoster

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 1581-1594 | Received 17 Jan 2023, Accepted 05 May 2023, Published online: 17 May 2023

References

  • Bollea-Garlatti ML, Bollea-Garlatti LA, Vacas AS, et al. Clinical characteristics and outcomes in a population with disseminated herpes zoster: a retrospective cohort study. [Caracteristicas clinicas y evolutivas de una poblacion con herpes zoster diseminado: un estudio de cohorte retrospectiva]. Actas Dermosifiliogr. 2017;108(2):145–152. doi:10.1016/j.ad.2016.10.009
  • Olivera PA, Lasa JS, Bonovas S, Danese S, Peyrin-Biroulet L. Safety of janus kinase inhibitors in patients with inflammatory bowel diseases or other immune-mediated diseases: a systematic review and meta-analysis. Gastroenterology. 2020;158(6):1554–1573 e12. doi:10.1053/j.gastro.2020.01.001
  • McKay SL, Guo A, Pergam SA, Dooling K. Herpes zoster risk in immunocompromised adults in the United States: a systematic review. Clin Infect Dis. 2020;71(7):e125–e134. doi:10.1093/cid/ciz1090
  • Sun X, Wei Z, Lin H, Jit M, Li Z, Fu C. Incidence and disease burden of herpes zoster in the population aged ≥50 years in China: data from an integrated health care network. J Infect. 2021;82(2):253–260. doi:10.1016/j.jinf.2020.12.013
  • Saguil A, Kane S, Mercado M, Lauters R. Herpes zoster and postherpetic neuralgia: prevention and management. Am Fam Physician. 2017;96(10):656–663.
  • Sun Y, Kim E, Kong CL, Arnold BF, Porco TC, Acharya NR. Effectiveness of the recombinant zoster vaccine in adults aged 50 and older in the United States: a claims-based cohort study. Clin Infect Dis. 2021;73(6):949–956. doi:10.1093/cid/ciab121
  • Gu Y, Zuo X, Zhang S, et al. The mechanism behind influenza virus cytokine storm. Viruses. 2021;13(7):Jul. doi:10.3390/v13071362
  • El Karoui K, De Vriese AS. COVID-19 in dialysis: clinical impact, immune response, prevention, and treatment. Kidney Int. 2022;101(5):883–894. doi:10.1016/j.kint.2022.01.022
  • Gao LA, Wilkinson ME, Strecker J, et al. Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science. 2022;377(6607):eabm4096. doi:10.1126/science.abm4096
  • Snoeck S, Abramson BW, Garcia AGK, Egan AN, Michael TP, Steinbrenner AD. Evolutionary gain and loss of a plant pattern-recognition receptor for HAMP recognition. Elife. 2022;11. doi:10.7554/eLife.81050
  • Sun L, Liu W, Zhang LJ. The role of toll-like receptors in skin host defense, psoriasis, and atopic dermatitis. J Immunol Res. 2019;2019:1824624. doi:10.1155/2019/1824624
  • Miller LS, Modlin RL. Toll-like receptors in the skin. Semin Immunopathol. 2007;29(1):15–26. doi:10.1007/s00281-007-0061-8
  • Zhu KC, Wu M, Zhang DC, et al. Toll-like receptor 5 of golden pompano Trachinotus ovatus (Linnaeus 1758): characterization, promoter activity and functional analysis. Int J Mol Sci. 2020;21(16). doi:10.3390/ijms21165916
  • Hu YH, Wang Y, Wang F, et al. SPOP negatively regulates Toll-like receptor-induced inflammation by disrupting MyD88 self-association. Cell Mol Immunol. 2021;18(7):1708–1717. doi:10.1038/s41423-020-0411-1
  • Manik M, Singh RK. Role of toll-like receptors in modulation of cytokine storm signaling in SARS-CoV-2-induced COVID-19. J Med Virol. 2022;94(3):869–877. doi:10.1002/jmv.27405
  • Ruterbusch M, Pruner KB, Shehata L, Pepper M. In Vivo CD4(+) T cell differentiation and function: revisiting the Th1/Th2 Paradigm. Annu Rev Immunol. 2020;38:705–725. doi:10.1146/annurev-immunol-103019-085803
  • Huang X, Yang Y. Targeting the TLR9-MyD88 pathway in the regulation of adaptive immune responses. Expert Opin Ther Targets. 2010;14(8):787–796. doi:10.1517/14728222.2010.501333
  • Wang LF. Expression and significance of toll-like receptor 4 and 9 mRNA in peripheral blood mononuclear cells of children with herpes zoster. National Medl Front Chin. 2012;7(10):1–2.
  • Wu JL, Liu Y, Gong SZ, Zhao M, Zhang XJ. Expression of TLR2, TLR4 mRNA in peripheral blood mononuclear cells of patients with herpes zoster. Chin Med Abstrac. 2010;27(05):273–274.
  • Trudler D, Farfara D, Frenkel D. Toll-like receptors expression and signaling in glia cells in neuro-amyloidogenic diseases: towards future therapeutic application. Mediators Inflamm. 2010;2010:1–12. doi:10.1155/2010/497987
  • Yu HR, Huang HC, Kuo HC, et al. IFN-alpha production by human mononuclear cells infected with varicella-zoster virus through TLR9-dependent and -independent pathways. Cell Mol Immunol. 2011;8(2):181–188. doi:10.1038/cmi.2010.84
  • Patil A, Goldust M, Wollina U. Herpes zoster: a review of clinical manifestations and management. Viruses. 2022;14(2):192. doi:10.3390/v14020192
  • van Besouw NM, Verjans GM, Zuijderwijk JM, Litjens NH, Osterhaus AD, Weimar W. Systemic varicella zoster virus reactive effector memory T-cells impaired in the elderly and in kidney transplant recipients. J Med Virol. 2012;84(12):2018–2025. doi:10.1002/jmv.23427
  • Dayan RR, Peleg R. Herpes zoster - typical and atypical presentations. Postgrad Med. 2017;129(6):567–571. doi:10.1080/00325481.2017.1335574
  • Laing KJ, Ouwendijk WJD, Koelle DM, Verjans G. Immunobiology of Varicella-Zoster Virus Infection. J Infect Dis. 2018;218(suppl_2):S68–S74. doi:10.1093/infdis/jiy403
  • Ku CC, Zerboni L, Ito H, Graham BS, Wallace M, Arvin AM. Varicella-zoster virus transfer to skin by T Cells and modulation of viral replication by epidermal cell interferon-alpha. J Exp Med. 2004;200(7):917–925. doi:10.1084/jem.20040634
  • Arvin AM, Moffat JF, Sommer M, et al. Varicella-zoster virus T cell tropism and the pathogenesis of skin infection. Curr Top Microbiol Immunol. 2010;342:189–209. doi:10.1007/82_2010_29
  • Vossen MT, Gent MR, Weel JF, de Jong MD, van Lier RA, Kuijpers TW. Development of virus-specific CD4+ T cells on reexposure to Varicella-Zoster virus. J Infect Dis. 2004;190(1):72–82. doi:10.1086/421277
  • Vukmanovic-Stejic M, Sandhu D, Seidel JA, et al. The characterization of varicella zoster virus-specific T cells in skin and blood during aging. J Invest Dermatol. 2015;135(7):1752–1762. doi:10.1038/jid.2015.63
  • James SF, Traina-Dorge V, Deharo E, et al. T cells increase before zoster and PD-1 expression increases at the time of zoster in immunosuppressed nonhuman primates latently infected with simian varicella virus. J Neurovirol. 2014;20(3):309–313. doi:10.1007/s13365-014-0237-7
  • Zhang MF, Ma J, Yang L, Zhang J, Zhang XY. Detection of Serum CD4+ T cell and T-lymphocyte subsets in patients of herpes zoster. Chin J Integr Med. 2009;23(04):205–206+235.
  • Peng Q, Guo X, Luo Y, et al. Dynamic Immune Landscape and VZV-Specific T cell responses in patients with herpes zoster and postherpetic neuralgia. Front Immunol. 2022;13:887892. doi:10.3389/fimmu.2022.887892
  • Weinberg A, Levin MJ. VZV T cell-mediated immunity. Curr Top Microbiol Immunol. 2010;342:341–357. doi:10.1007/82_2010_31
  • Steain M, Sutherland JP, Rodriguez M, Cunningham AL, Slobedman B, Abendroth A. Analysis of T cell responses during active varicella-zoster virus reactivation in human ganglia. J Virol. 2014;88(5):2704–2716. doi:10.1128/JVI.03445-13
  • Harrer A, Wipfler P, Pilz G, et al. Adaptive immune responses in a multiple sclerosis patient with acute varicella-zoster virus reactivation during treatment with fingolimod. Int J Mol Sci. 2015;16(9):21832–21845. doi:10.3390/ijms160921832
  • Hirahara K, Nakayama T. CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm. Int Immunol. 2016;28(4):163–171. doi:10.1093/intimm/dxw006
  • Ciofani M, Madar A, Galan C, et al. A validated regulatory network for Th17 cell specification. Cell. 2012;151(2):289–303. doi:10.1016/j.cell.2012.09.016
  • Cooney LA, Towery K, Endres J, Fox DA. Sensitivity and resistance to regulation by IL-4 during Th17 maturation. J Immunol. 2011;187(9):4440–4450. doi:10.4049/jimmunol.1002860
  • Ku CC, Chang YH, Chien Y, Lee TL. Type I interferon inhibits varicella-zoster virus replication by interfering with the dynamic interaction between mediator and IE62 within replication compartments. Cell Biosci. 2016;6:21. doi:10.1186/s13578-016-0086-6
  • Nikkels AF, Sadzot-Delvaux C, Pierard GE. Absence of intercellular adhesion molecule 1 expression in varicella zoster virus-infected keratinocytes during herpes zoster: another immune evasion strategy? Am J Dermatopathol. 2004;26(1):27–32. doi:10.1097/00000372-200402000-00005
  • Zhang M, Wu N, Yang L, et al. Study on the T-helper cell 1/2 cytokine profile in blister fluid of patients with herpes zoster and its clinical significance. J Dermatol. 2011;38(12):1158–1162. doi:10.1111/j.1346-8138.2011.01289.x
  • Zhu SM, Liu YM, An ED, Chen QL. Influence of systemic immune and cytokine responses during the acute phase of zoster on the development of postherpetic neuralgia. J Zhejiang Univ Sci B. 2009;10(8):625–630. doi:10.1631/jzus.B0920049
  • Bayat A, Burbelo PD, Browne SK, et al. Anti-cytokine autoantibodies in postherpetic neuralgia. J Transl Med. 2015;13:333. doi:10.1186/s12967-015-0695-6
  • Zajkowska A, Garkowski A, Swierzbinska R, et al. Evaluation of chosen cytokine levels among patients with herpes zoster as ability to provide immune response. PLoS One. 2016;11(3):e0150301. doi:10.1371/journal.pone.0150301
  • Kumagai J, Hirahara K, Nakayama T. [Pathogenic Th cell subsets in chronic inflammatory diseases]. Nihon Rinsho Meneki Gakkai Kaishi. 2016;39(2):114–123. Japanese. doi:10.2177/jsci.39.114
  • Xing Q, Hu D, Shi F, Chen F. Role of regulatory T cells in patients with acute herpes zoster and relationship to postherpetic neuralgia. Arch Dermatol Res. 2013;305(8):715–722. doi:10.1007/s00403-013-1367-0
  • Wang JP, Kurt-Jones EA, Shin OS, Manchak MD, Levin MJ, Finberg RW. Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol. 2005;79(20):12658–12666. doi:10.1128/JVI.79.20.12658-12666.2005
  • Lagos D, Vart RJ, Gratrix F, et al. Toll-like receptor 4 mediates innate immunity to Kaposi sarcoma herpesvirus. Cell Host Microbe. 2008;4(5):470–483. doi:10.1016/j.chom.2008.09.012
  • Kortylewski M, Kujawski M, Herrmann A, et al. Toll-like receptor 9 activation of signal transducer and activator of transcription 3 constrains its agonist-based immunotherapy. Cancer Res. 2009;69(6):2497–2505. doi:10.1158/0008-5472.CAN-08-3031