328
Views
0
CrossRef citations to date
0
Altmetric
Headache and Facial Pain

Effect of High-Definition Transcranial Direct Current Stimulation on Headache Severity and Central µ-Opioid Receptor Availability in Episodic Migraine

, ORCID Icon, , ORCID Icon, ORCID Icon, , , & show all
Pages 2509-2523 | Received 23 Feb 2023, Accepted 27 Jun 2023, Published online: 21 Jul 2023

References

  • Headache Classification Committee of the International Headache Society. The international classification of headache disorders, 3rd edition (beta version). Cephalalgia. 2013;33:629–808. doi:10.1177/0333102413485658
  • Ashina M, Ropper AH. Migraine. N Engl J Med. 2020;383:1866–1876. doi:10.1056/NEJMRA1915327
  • Stovner LJ, Nichols E, Steiner TJ, et al. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:954–976. doi:10.1016/S1474-4422(18)30322-3
  • Pike J, Mutebi A, Shah N, et al. Factors associated with a history of failure and switching migraine prophylaxis treatment: an analysis of clinical practice data from the United States, Germany, France, and Japan. Value Health. 2016;19:A68. doi:10.1016/j.jval.2016.03.213
  • May A, Schulte LH. Chronic migraine: risk factors, mechanisms and treatment. Nat Rev Neurol. 2016;12:455–464. doi:10.1038/nrneurol.2016.93
  • Moisset X, Lefaucheur JP. Non pharmacological treatment for neuropathic pain: invasive and non-invasive cortical stimulation. Rev Neurol (Paris). 2019;175:51–58. doi:10.1016/j.neurol.2018.09.014
  • Knotkova H, Borckardt JJ, Riggs A, DaSilva AF. Transcranial Direct Current Stimulation Potential for Pain Management. Springer International Publishing; 2019.doi:10.1007/978-3-319-95948-1_18
  • DaSilva AF, Datta A, Swami J, Kim DJ, Patil PG, Bikson M. The concept, development, and application of a home-based high-definition tDCS for bilateral motor cortex modulation in migraine and pain. Front Pain Res. 2022;3:7.
  • Cai G, Xia Z, Charvet L, Xiao F, Datta A, Androulakis XM. A systematic review and meta-analysis on the efficacy of repeated transcranial direct current stimulation for migraine. J Pain Res. 2021;14:1171–1183. doi:10.2147/JPR.S295704
  • Feng Y, Zhang B, Zhang J, Yin Y. Effects of non-invasive brain stimulation on headache intensity and frequency of headache attacks in patients with migraine: a systematic review and meta-analysis. Headache. 2019;59:1436–1447. doi:10.1111/head.13645
  • Lefaucheur JP, Antal A, Ayache SS, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128:56–92. doi:10.1016/j.clinph.2016.10.087
  • O’Connell NE, Marston L, Spencer S, DeSouza LH, Wand BM. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev. 2018;4:CD008208. doi:10.1002/14651858.CD008208.pub5
  • DaSilva AF, Truong DQ, DosSantos MF, Toback RL, Datta A, Bikson M. State-of-art neuroanatomical target analysis of high-definition and conventional tDCS montages used for migraine and pain control. Front Neuroanat. 2015;9:89. doi:10.3389/fnana.2015.00089
  • Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2:201–207.e1. doi:10.1016/j.brs.2009.03.005
  • Kuo HI, Bikson M, Datta A, et al. Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study. Brain Stimul. 2013;6:644–648. doi:10.1016/j.brs.2012.09.010
  • Agboada D, Mosayebi-Samani M, Kuo MF, Nitsche MA. Induction of long-term potentiation-like plasticity in the primary motor cortex with repeated anodal transcranial direct current stimulation – better effects with intensified protocols? Brain Stimul. 2020;13:987–997. doi:10.1016/j.brs.2020.04.009
  • Donnell A, Nascimento TD, Lawrence M, et al. High-definition and non-invasive brain modulation of pain and motor dysfunction in chronic TMD. Brain Stimul. 2015;8:1085–1092. doi:10.1016/j.brs.2015.06.008
  • Castillo-Saavedra L, Gebodh N, Bikson M, et al. Clinically effective treatment of fibromyalgia pain with high-definition transcranial direct current stimulation: phase II open-label dose optimization. J Pain. 2016;17:14–26. doi:10.1016/j.jpain.2015.09.009
  • Gouty S, Silveira JT, Cote TE, Cox BM. Aversive stress reduces mu opioid receptor expression in the intercalated nuclei of the rat amygdala. Cell Mol Neurobiol. 2021;41:1119–1129. doi:10.1007/S10571-020-01026-7/FIGURES/5
  • Jassar H, Nascimento TD, Kaciroti N, et al. Impact of chronic migraine attacks and their severity on the endogenous μ-opioid neurotransmission in the limbic system. Neuro Image Clin. 2019;23:101905. doi:10.1016/j.nicl.2019.101905
  • Harris RE, Clauw DJ, Scott DJ, McLean SA, Gracely RH, Zubieta J-K. Decreased central μ-opioid receptor availability in fibromyalgia. J Neurosci. 2007;27:10000–10006. doi:10.1523/JNEUROSCI.2849-07.2007
  • Nascimento TD, Yang N, Salman D, et al. µ-opioid activity in chronic TMD pain is associated with COMT polymorphism. J Dent Res. 2019;98:1324–1331. doi:10.1177/0022034519871938
  • Zhou X-L, Yu LN, Wang Y, et al. Increased methylation of the MOR gene proximal promoter in primary sensory neurons plays a crucial role in the decreased analgesic effect of opioids in neuropathic pain. Mol Pain. 2014;10:51. doi:10.1186/1744-8069-10-51
  • Kato F, Sugimura YK, Takahashi Y. Pain-associated neural plasticity in the parabrachial to central amygdala circuit: pain changes the brain, and the brain changes the pain. Adv Exp Med Biol. 2018;1099:157–166. doi:10.1007/978-981-13-1756-9_14/FIGURES/2
  • Moulton EA, Becerra L, Maleki N. Painful heat reveals hyperexcitability of the temporal pole in interictal and ictal migraine states. Cereb Cortex. 2011;21:435–448. doi:10.1093/cercor/bhq109
  • Tassorelli C, Diener H-C, Dodick DW, et al. Guidelines of the International Headache Society for controlled trials of preventive treatment of chronic migraine in adults. Cephalalgia. 2018;38:815–832. doi:10.1177/0333102418758283
  • Diener H-C, Tassorelli C, Dodick DW, et al. Guidelines of the International Headache Society for controlled trials of preventive treatment of migraine attacks in episodic migraine in adults. Cephalalgia. 2020;40:1026–1044. doi:10.1177/0333102420941839
  • Schulz KF, Altman DG, Moher D, CONSORT Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials. PLoS Med. 2010;7(3):e1000251.
  • Kang M, Ragan BG, Park J-H. Issues in outcomes research: an overview of randomization techniques for clinical trials. J Athl Train. 2008;43:215–221. doi:10.4085/1062-6050-43.2.215
  • Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117:845–850. doi:10.1016/j.clinph.2005.12.003
  • Blecha JE, Henderson BD, Hockley BG, et al. An updated synthesis of [11C]carfentanil for positron emission tomography (PET) imaging of the μ-opioid receptor. J Label Compd Radiopharm. 2017;60:375–380. doi:10.1002/JLCR.3513
  • Kaciroti N, DosSantos MF, Moura B, et al. Sensory-discriminative three-dimensional body pain mobile app measures versus traditional pain measurement with a visual analog scale: validation study. JMIR mHealth uHealth. 2020;8:e17754. doi:10.2196/17754
  • Schwedt TJ, Chiang -C-C, Chong CD, Dodick DW. Functional MRI of migraine. Lancet Neurol. 2015;14:81–91. doi:10.1016/S1474-4422(14)70193-0
  • Zubieta JK, Smith YR, Bueller JA, et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science. 2001;293:311–315. doi:10.1126/science.1060952
  • Meeker TJ, Keaser ML, Khan SA, Gullapalli RP, Seminowicz DA, Greenspan JD. Non-invasive motor cortex neuromodulation reduces secondary hyperalgesia and enhances activation of the descending pain modulatory network. Front Neurosci. 2019;13. doi:10.3389/fnins.2019.00467
  • Lim M, Kim DJ, Nascimento TD, et al. Functional magnetic resonance imaging signal variability is associated with neuromodulation in fibromyalgia. Neuromodul Technol Neural Interface. 2021;ner.13512. doi:10.1111/ner.13512
  • Hemington KS, Coulombe M-A. The periaqueductal gray and descending pain modulation: why should we study them and what role do they play in chronic pain? J Neurophysiol. 2015;114:2080–2083. doi:10.1152/jn.00998.2014.-In
  • Linnman C, Moulton EA, Barmettler G, Becerra L, Borsook D. Neuroimaging of the periaqueductal gray: state of the field. Neuroimage. 2012;60:505–522. doi:10.1016/j.neuroimage.2011.11.095
  • Mills EP, Alshelh Z, Kosanovic D, et al. Altered brainstem pain-modulation circuitry connectivity during spontaneous pain intensity fluctuations. J Pain Res. 2020;13:2223–2235. doi:10.2147/JPR.S252594
  • Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron. 2008;59:1037–1050. doi:10.1016/J.NEURON.2008.09.006
  • Wager TD, Waugh CE, Lindquist M, Noll DC, Fredrickson BL, Taylor SF. Brain mediators of cardiovascular responses to social threat. Neuroimage. 2009;47:821–835. doi:10.1016/j.neuroimage.2009.05.043
  • Matsumoto H, Ugawa Y. Adverse events of tDCS and tACS: a review. Clin Neurophysiol Pract. 2017;2:19–25. doi:10.1016/j.cnp.2016.12.003
  • Bikson M, Grossman P, Thomas C, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9:641–661. doi:10.1016/j.brs.2016.06.004
  • Ossipov MH, Morimura K, Porreca F. Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care. 2014;8:143–151. doi:10.1097/SPC.0000000000000055
  • Valentino RJ, Van Bockstaele E. Endogenous opioids: the downside of opposing stress. Neurobiol Stress. 2015;1:23–32. doi:10.1016/j.ynstr.2014.09.006
  • Schulte LH, Menz MM, Haaker J, May A. The migraineur’s brain networks: continuous resting state fMRI over 30 days. Cephalalgia. 2020;40:1614–1621. doi:10.1177/0333102420951465
  • Ornello R, Caponnetto V, Ratti S, et al. Which is the best transcranial direct current stimulation protocol for migraine prevention? A systematic review and critical appraisal of randomized controlled trials. J Headache Pain. 2021;22:1–13. doi:10.1186/S10194-021-01361-0/FIGURES/7
  • Ploghaus A, Narain C, Beckmann CF, et al. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci. 2001;21:9896–9903. doi:10.1523/JNEUROSCI.21-24-09896.2001
  • Vachon-Presseau E, Martel MO, Roy M, et al. Acute stress contributes to individual differences in pain and pain-related brain activity in healthy and chronic pain patients. J Neurosci. 2013;33:6826–6833. doi:10.1523/JNEUROSCI.4584-12.2013
  • Porreca F, Navratilova E. Reward, motivation, and emotion of pain and its relief. Pain. 2017;158:S43–S49. doi:10.1097/j.pain.0000000000000798
  • Stankewitz A, Keidel L, Rehm M, et al. Migraine attacks as a result of hypothalamic loss of control. Neuro Image Clin. 2021;32:102784. doi:10.1016/j.nicl.2021.102784
  • Schulte LH, May A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain. 2016;139:1987–1993. doi:10.1093/brain/aww097
  • Valentino RJ, Volkow ND. Untangling the complexity of opioid receptor function. Neuropsychopharmacol. 2018;43:2514–2520. doi:10.1038/s41386-018-0225-3
  • Ribeiro SC, Kennedy SE, Smith YR, Stohler CS, Zubieta JK. Interface of physical and emotional stress regulation through the endogenous opioid system and μ-opioid receptors. Prog Neuro Psychopharmacol Biol Psychiatry. 2005;29:1264–1280.
  • Avona A, Mason BN, Lackovic J, et al. Repetitive stress in mice causes migraine-like behaviors and calcitonin gene-related peptide-dependent hyperalgesic priming to a migraine trigger. Pain. 2020;161:2539–2550. doi:10.1097/j.pain.0000000000001953
  • DosSantos MF, Oliveira AT, Ferreira NR, Carvalho ACP, Rosado de Castro PH. The contribution of endogenous modulatory systems to TMS- and tDCS-induced analgesia: evidence from PET studies. Pain Res Manag. 2018;2018:1–14. doi:10.1155/2018/2368386
  • Maarrawi J, Peyron R, Mertens P, et al. Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology. 2007;69:827–834. doi:10.1212/01.wnl.0000269783.86997.37
  • DosSantos MF, Love TM, Martikainen IK, et al. Immediate effects of tDCS on the μ-opioid system of a chronic pain patient. Front Psychiatry. 2012;3:93. doi:10.3389/fpsyt.2012.00093
  • DosSantos MF, Martikainen IK, Nascimento TD, et al. Building up analgesia in humans via the endogenous μ-opioid system by combining placebo and active tDCS: a preliminary report. PLoS One. 2014;9:e102350. doi:10.1371/journal.pone.0102350
  • Hosobuchi Y, Adams JE, Linchitz R. Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science. 1977;197:183–186. doi:10.1126/science.301658
  • Barnett AG, van der Pols JC, Dobson AJ. Regression to the mean: what it is and how to deal with it. Int J Epidemiol. 2005;34:215–220. doi:10.1093/IJE/DYH299