256
Views
0
CrossRef citations to date
0
Altmetric
Musculoskeletal Pain/Rehabilitation

DNA Methylation Changes in Blood Cells of Fibromyalgia and Chronic Fatigue Syndrome Patients

, , ORCID Icon &
Pages 4025-4036 | Received 08 Sep 2023, Accepted 13 Nov 2023, Published online: 29 Nov 2023

References

  • Moyano S, Kilstein JG, Alegre de Miguel C. New diagnostic criteria for fibromyalgia: here to stay? Reumatol Clin. 2015;11(4):210–214. doi:10.1016/j.reuma.2014.07.008
  • Galvez-Sánchez CM, Reyes del paso GA. Diagnostic criteria for fibromyalgia: critical review and future perspectives. J Clin Med. 2020;9(4):1219. doi:10.3390/jcm9041219
  • Wolfe F, Clauw DJ, Fitzcharles MA, et al. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 2010;62(5):600–610. doi:10.1002/acr.20140
  • Sarzi-Puttini P, Giorgi V, Marotto D, Atzeni F. Fibromyalgia: an update on clinical characteristics, aetiopathogenesis and treatment. Nat Rev Rheumatol. 2020;16(11):645–660. doi:10.1038/s41584-020-00506-w
  • Bateman L, Bested AC, Bonilla HF, et al. Myalgic encephalomyelitis/chronic fatigue syndrome: essentials of diagnosis and management. Mayo Clin Proc. 2021;96(11):2861–2878. doi:10.1016/j.mayocp.2021.07.004
  • Bested AC, Marshall LM. Review of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: an evidence-based approach to diagnosis and management by clinicians. Rev Environ Health. 2015;30(4):223–249. doi:10.1515/reveh-2015-0026
  • Borchers AT, Gershwin ME. Fibromyalgia: a critical and comprehensive review. Clin Rev Allergy Immunol. 2015;49(2):100–151. doi:10.1007/s12016-015-8509-4
  • Queiroz LP. Worldwide epidemiology of fibromyalgia. Curr Pain Headache Rep. 2013;17(8):356. doi:10.1007/s11916-013-0356-5
  • Lim EJ, Ahn YC, Jang ES, Lee SW, Lee SH, Son CG. Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J Transl Med. 2020;18(1):100. doi:10.1186/s12967-020-02269-0
  • Arnold LM, Hudson JI, Hess EV, et al. Family study of fibromyalgia. Arthritis Rheum. 2004;50(3):944–952. doi:10.1002/art.20042
  • Dutta D, Brummett CM, Moser SE, et al. Heritability of the fibromyalgia phenotype varies by age. Arthritis Rheumatol. 2020;72(5):815–823. doi:10.1002/art.41171
  • Rahman MS, Winsvold BS, Chavez Chavez SO, et al. Genome-wide association study identifies RNF123 locus as associated with chronic widespread musculoskeletal pain. Ann Rheum Dis. 2021;80(9):1227–1235. doi:10.1136/annrheumdis-2020-219624
  • Gloor Y, Matthey A, Sobo K, et al. Uncovering a genetic polymorphism located in huntingtin associated protein 1 in modulation of central pain sensitization signaling pathways. Front Neurosci. 2022;16:807773. doi:10.3389/fnins.2022.807773
  • Buchwald D, Herrell R, Ashton S, et al. A twin study of chronic fatigue. Psychosom Med. 2001;63(6):936–943. doi:10.1097/00006842-200111000-00012
  • Walsh CM, Zainal NZ, Middleton SJ, Paykel ES. A family history study of chronic fatigue syndrome. Psychiatr Genet. 2001;11(3):123–128. doi:10.1097/00041444-200109000-00003
  • Hickie I, Kirk K, Martin N. Unique genetic and environmental determinants of prolonged fatigue: a twin study. Psychol Med. 1999;29(2):259–268. doi:10.1017/s0033291798007934
  • Smith AK, Fang H, Whistler T, Unger ER, Rajeevan MS. Convergent genomic studies identify association of GRIK2 and NPAS2 with chronic fatigue syndrome. Neuropsychobiology. 2011;64(4):183–194. doi:10.1159/000326692
  • Tanigawa Y, Li J, Justesen JM, et al. Components of genetic associations across 2138 phenotypes in the UK Biobank highlight adipocyte biology. Nat Commun. 2019;10(1):4064. doi:10.1038/s41467-019-11953-9
  • Canela-Xandri O, Rawlik K, Tenesa A. An atlas of genetic associations in UK Biobank. Nat Genet. 2018;50(11):1593–1599. doi:10.1038/s41588-018-0248-z
  • Ciampi de Andrade D, Maschietto M, Galhardoni R, et al. Epigenetics insights into chronic pain: DNA hypomethylation in fibromyalgia-a controlled pilot-study. Pain. 2017;158(8):1473–1480. doi:10.1097/j.pain.0000000000000932
  • Herrera S, de Vega WC, Ashbrook D, Vernon SD, McGowan PO. Genome-epigenome interactions associated with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Epigenetics. 2018;13(12):1174–1190. doi:10.1080/15592294.2018.1549769
  • de Vega WC, Herrera S, Vernon SD, McGowan PO. Epigenetic modifications and glucocorticoid sensitivity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). BMC Med Genomics. 2017;10(1):11. doi:10.1186/s12920-017-0248-3
  • de Vega WC, Erdman L, Vernon SD, Goldenberg A, McGowan PO. Integration of DNA methylation & health scores identifies subtypes in myalgic encephalomyelitis/chronic fatigue syndrome. Epigenomics. 2018;10(5):539–557. doi:10.2217/epi-2017-0150
  • Sarzi-Puttini P, Giorgi V, Atzeni F, et al. Fibromyalgia position paper. Clin Exp Rheumatol. 2021;39(3):186–193. doi:10.55563/clinexprheumatol/i19pig
  • Morris TJ, Butcher LM, Feber A, et al. ChAMP: 450k chip analysis methylation pipeline. Bioinformatics. 2014;30(3):428–430. doi:10.1093/bioinformatics/btt684
  • Tian Y, Morris TJ, Webster AP, et al. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics. 2017;33(24):3982–3984. doi:10.1093/bioinformatics/btx513
  • Campagna MP, Xavier A, Lechner-Scott J, et al. Epigenome-wide association studies: current knowledge, strategies and recommendations. Clin Epigenetics. 2021;13(1):214. doi:10.1186/s13148-021-01200-8
  • Teschendorff AE, Breeze CE, Zheng SC, Beck S. A comparison of reference-based algorithms for correcting cell-type heterogeneity in Epigenome-Wide Association Studies. BMC Bioinf. 2017;18(1):105. doi:10.1186/s12859-017-1511-5
  • McGregor K, Bernatsky S, Colmegna I, et al. An evaluation of methods correcting for cell-type heterogeneity in DNA methylation studies. Genome Biol. 2016;17(1):84. doi:10.1186/s13059-016-0935-y
  • Bińkowski J, Taryma-Leśniak O, Łuczkowska K, et al. Epigenetic activation of antiviral sensors and effectors of interferon response pathways during SARS-CoV-2 infection. Biomed Pharmacother. 2022;153:113396. doi:10.1016/j.biopha.2022.113396
  • Cunningham F, Allen JE, Allen J, et al. Ensembl 2022. Nucleic Acids Res. 2022;50(D1):D988–D995. doi:10.1093/nar/gkab1049
  • Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8(1):1826. doi:10.1038/s41467-017-01261-5
  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic Acids Res. 2004;32(Database issue):D23–D26. doi:10.1093/nar/gkh045
  • Lesurf R, Cotto KC, Wang G, et al. ORegAnno 3.0: a community-driven resource for curated regulatory annotation. Nucleic Acids Res. 2016;44(D1):D126–D132. doi:10.1093/nar/gkv1203
  • Fishilevich S, Nudel R, Rappaport N, et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database. 2017;2017. doi:10.1093/database/bax028
  • Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196(2):261–282. doi:10.1016/0022-2836(87)90689-9
  • Bliss TV, Collingridge GL, Kaang BK, Zhuo M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci. 2016;17(8):485–496. doi:10.1038/nrn.2016.68
  • Shi H, Yuan C, Dai Z, Ma H, Sheng L. Gray matter abnormalities associated with fibromyalgia: a meta-analysis of voxel-based morphometric studies. Semin Arthritis Rheum. 2016;46(3):330–337. doi:10.1016/j.semarthrit.2016.06.002
  • Li CY, Zhang XL, Matthews EA, et al. Calcium channel alpha2delta1 subunit mediates spinal hyperexcitability in pain modulation. Pain. 2006;125(1–2):20–34. doi:10.1016/j.pain.2006.04.022
  • Li KW, Yu YP, Zhou C, et al. Calcium channel α2δ1 proteins mediate trigeminal neuropathic pain states associated with aberrant excitatory synaptogenesis. J Biol Chem. 2014;289(10):7025–7037. doi:10.1074/jbc.M114.548990
  • Harding EK, Dedek A, Bonin RP, Salter MW, Snutch TP, Hildebrand ME. The T-type calcium channel antagonist, Z944, reduces spinal excitability and pain hypersensitivity. Br J Pharmacol. 2021;178(17):3517–3532. doi:10.1111/bph.15498
  • Chen J, Li L, Chen SR, et al. The α2δ-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. Cell Rep. 2018;22(9):2307–2321. doi:10.1016/j.celrep.2018.02.021
  • Zhang WT, Sha WL, Zhu Q, Wu XB, He C. Plasticity of neuronal excitability and synaptic balance in the anterior nucleus of paraventricular thalamus after nerve injury. Brain Res Bull. 2022;188:1–10. doi:10.1016/j.brainresbull.2022.07.008
  • Yang X, Yuan C, Wang H, et al. Changes in serum angiogenic factors among patients with acute pain and subacute pain. Front Mol Neurosci. 2022;15:960460. doi:10.3389/fnmol.2022.960460
  • Wimmer I, Tietz S, Nishihara H, et al. PECAM-1 stabilizes blood-brain barrier integrity and favors paracellular T-cell diapedesis across the blood-brain barrier during neuroinflammation. Front Immunol. 2019;10:711. doi:10.3389/fimmu.2019.00711
  • Chu Y, Ge W, Wang X. MicroRNA-448 modulates the progression of neuropathic pain by targeting sirtuin 1. Exp Ther Med. 2019;18(6):4665–4672. doi:10.3892/etm.2019.8165
  • Wang L, Zhu K, Yang B, Cai Y. Knockdown of Linc00052 alleviated spinal nerve ligation-triggered neuropathic pain through regulating miR-448 and JAK1. J Cell Physiol. 2020;235(10):6528–6535. doi:10.1002/jcp.29465
  • Ke-Gang J, Zhi-Wei L, Xin Z, et al. Evaluating diagnostic and prognostic value of plasma miRNA133a in acute chest pain patients undergoing coronary angiography. Medicine. 2016;95(17):e3412. doi:10.1097/MD.0000000000003412
  • Miyamoto S, Usami S, Kuwabara Y, et al. Expression patterns of miRNA-423-5p in the serum and pericardial fluid in patients undergoing cardiac surgery. PLoS One. 2015;10(11):e0142904. doi:10.1371/journal.pone.0142904
  • Norcini M, Choi D, Lu H, et al. Intrathecal injection of miR-133b-3p or miR-143-3p prevents the development of persistent cold and mechanical allodynia following a peripheral nerve injury in rats. Neuroscience. 2018;386:223–239. doi:10.1016/j.neuroscience.2018.06.040
  • Guo X, Lu J, Yan M, et al. MicroRNA-133b-3p targets purinergic P2X4 receptor to regulate central poststroke pain in rats. Neuroscience. 2022;481:60–72. doi:10.1016/j.neuroscience.2021.10.015
  • Sanchez-Simon FM, Zhang XX, Loh HH, Law PY, Rodriguez RE. Morphine regulates dopaminergic neuron differentiation via miR-133b. Mol Pharmacol. 2010;78(5):935–942. doi:10.1124/mol.110.066837
  • Ramanathan S, Douglas SR, Alexander GM, et al. Exosome microRNA signatures in patients with complex regional pain syndrome undergoing plasma exchange. J Transl Med. 2019;17(1):81. doi:10.1186/s12967-019-1833-3
  • Peek SL, Mah KM, Weiner JA. Regulation of neural circuit formation by protocadherins. Cell Mol Life Sci. 2017;74(22):4133–4157. doi:10.1007/s00018-017-2572-3
  • Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the crossroad of signaling pathways. Front Mol Neurosci. 2020;13:117. doi:10.3389/fnmol.2020.00117
  • Molumby MJ, Keeler AB, Weiner JA. Homophilic protocadherin cell-cell interactions promote dendrite complexity. Cell Rep. 2016;15(5):1037–1050. doi:10.1016/j.celrep.2016.03.093
  • Hirayama T, Yagi T. Regulation of clustered protocadherin genes in individual neurons. Semin Cell Dev Biol. 2017;69:122–130. doi:10.1016/j.semcdb.2017.05.026
  • Mah KM, Houston DW, Weiner JA. The γ-Protocadherin-C3 isoform inhibits canonical Wnt signalling by binding to and stabilizing Axin1 at the membrane. Sci Rep. 2016;6(1):31665. doi:10.1038/srep31665
  • Yagi T, Takeichi M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev. 2000;14(10):1169–1180. doi:10.1101/gad.14.10.1169
  • Garafola CS, Henn FA. A change in hippocampal protocadherin gamma expression in a learned helpless rat. Brain Res. 2014;1593:55–64. doi:10.1016/j.brainres.2014.08.071
  • Li LX, Huang JH, Pan LZ, Zhang XL, Pan YG, Jin LJ. Whole-exome sequencing identified rare variants in PCDHGB1 in patients with adult-onset dystonia. Mov Disord. 2022;37(5):1099–1101. doi:10.1002/mds.28965
  • Matsui T, Ii K, Hojo S, Sano K. Cervical neuro-muscular syndrome: discovery of a new disease group caused by abnormalities in the cervical muscles. Neurol Med Chir. 2012;52(2):75–80. doi:10.2176/nmc.52.75
  • Carriere CH, Wang WX, Sing AD, et al. The γ-protocadherins regulate the survival of GABAergic interneurons during developmental cell death. J Neurosci. 2020;40(45):8652–8668. doi:10.1523/JNEUROSCI.1636-20.2020
  • Feldheim J, Wend D, Lauer MJ, et al. Protocadherin Gamma C3 (PCDHGC3) is strongly expressed in glioblastoma and its high expression is associated with longer progression-free survival of patients. Int J Mol Sci. 2022;23(15):8101. doi:10.3390/ijms23158101
  • D’Autréaux F, Coppola E, Hirsch MR, Birchmeier C, Brunet JF. Homeoprotein Phox2b commands a somatic-to-visceral switch in cranial sensory pathways. Proc Natl Acad Sci U S A. 2011;108(50):20018–20023. doi:10.1073/pnas.1110416108
  • Robinson LJ, Durham J, Newton JL. A systematic review of the comorbidity between temporomandibular disorders and chronic fatigue syndrome. J Oral Rehabil. 2016;43(4):306–316. doi:10.1111/joor.12367
  • Gavriilaki E, Papakonstantinou A, Agrios KA. Novel Insights into Factor D Inhibition. Int J Mol Sci. 2022;23(13):7216. doi:10.3390/ijms23137216
  • Sun W, Yang S, Wu S, et al. Transcriptome analysis reveals dysregulation of inflammatory and neuronal function in dorsal root ganglion of paclitaxel-induced peripheral neuropathy rats. Mol Pain. 2022:17448069221106167. doi:10.1177/17448069221106167
  • Ko SW, Vadakkan KI, Ao H, et al. Selective contribution of Egr1 (zif/268) to persistent inflammatory pain. J Pain. 2005;6(1):12–20. doi:10.1016/j.jpain.2004.10.001
  • Han J, Kwon M, Cha M, et al. Plasticity-related PKMζ signaling in the insular cortex is involved in the modulation of neuropathic pain after nerve injury. Neural Plast. 2015;2015:601767. doi:10.1155/2015/601767
  • Wang RS, Lembo AJ, Kaptchuk TJ, et al. Genomic effects associated with response to placebo treatment in a randomized trial of irritable bowel syndrome. Front Pain Res. 2021;2:775386. doi:10.3389/fpain.2021.775386
  • Alsamri MT, Alabdouli A, Iram D, et al. A study on the genetics of primary ciliary dyskinesia. J Clin Med. 2021;10(21):5102. doi:10.3390/jcm10215102
  • Megat S, Ray PR, Tavares-Ferreira D, et al. Differences between dorsal root and trigeminal ganglion nociceptors in mice revealed by translational profiling. J Neurosci. 2019;39(35):6829–6847. doi:10.1523/JNEUROSCI.2663-18.2019
  • Li J, Tang H, Tu W. Mechanism of dexmedetomidine preconditioning on spinal cord analgesia in rats with functional chronic visceral pain. Acta Cir Bras. 2022;37(2):e370203. doi:10.1590/acb370203
  • Lakhan SE, Kirchgessner A. Gut inflammation in chronic fatigue syndrome. Nutr Metab. 2010;7(1):79. doi:10.1186/1743-7075-7-79
  • Menzies V, Lyon DE, Archer KJ, et al. Epigenetic alterations and an increased frequency of micronuclei in women with fibromyalgia. Nurs Res Pract. 2013;2013:795784. doi:10.1155/2013/795784
  • Brenu EW, Staines DR, Marshall-Gradisnik SM. Methylation profile of CD4+ T cells in chronic fatigue syndrome/myalgic encephalomyelitis. J Clin Cell Immunol. 2014;5(228):10–4172.
  • Trivedi MS, Oltra E, Sarria L, et al. Identification of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-associated DNA methylation patterns. PLoS One. 2018;13(7):e0201066. doi:10.1371/journal.pone.0201066
  • de Vega WC, Vernon SD, McGowan PO, Ballestar E. DNA methylation modifications associated with chronic fatigue syndrome. PLoS One. 2014;9(8):e104757. doi:10.1371/journal.pone.0104757
  • Burri A, Marinova Z, Robinson MD, et al. Are epigenetic factors implicated in chronic widespread pain? PLoS One. 2016;11(11):e0165548. doi:10.1371/journal.pone.0165548
  • Helliwell AM, Sweetman EC, Stockwell PA, Edgar CD, Chatterjee A, Tate WP. Changes in DNA methylation profiles of myalgic encephalomyelitis/chronic fatigue syndrome patients reflect systemic dysfunctions. Clin Epigenetics. 2020;12(1):167. doi:10.1186/s13148-020-00960-z
  • Helliwell AM, Stockwell PA, Edgar CD, Chatterjee A, Tate WP. Dynamic epigenetic changes during a relapse and recovery cycle in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci. 2022;23(19):11852. doi:10.3390/ijms231911852
  • Gerra MC, Carnevali D, Ossola P, et al. DNA methylation changes in fibromyalgia suggest the role of the immune-inflammatory response and central sensitization. J Clin Med. 2021;10(21):4992. doi:10.3390/jcm10214992
  • Gerra MC, Carnevali D, Pedersen IS, et al. DNA methylation changes in genes involved in inflammation and depression in fibromyalgia: a pilot study. Scand J Pain. 2021;21(2):372–383. doi:10.1515/sjpain-2020-0124
  • Vangeel E, Van Den Eede F, Hompes T, et al. Chronic fatigue syndrome and DNA hypomethylation of the glucocorticoid receptor gene promoter 1f region: associations with hpa axis hypofunction and childhood trauma. Psychosom Med. 2015;77(8):853–862. doi:10.1097/PSY.0000000000000224
  • Falkenberg VR, Whistler T, Murray JR, Unger ER, Rajeevan MS. Acute psychosocial stress-mediated changes in the expression and methylation of perforin in chronic fatigue syndrome. Genet Epigenet. 2013;5:1–9. doi:10.4137/GEG.S10944
  • Polli A, Hendrix J, Ickmans K, et al. Genetic and epigenetic regulation of Catechol-O-methyltransferase in relation to inflammation in chronic fatigue syndrome and Fibromyalgia. J Transl Med. 2022;20(1):487. doi:10.1186/s12967-022-03662-7
  • Vangeel EB, Kempke S, Bakusic J, et al. Glucocorticoid receptor DNA methylation and childhood trauma in chronic fatigue syndrome patients. J Psychosom Res. 2018;104:55–60. doi:10.1016/j.jpsychores.2017.11.011
  • Achenbach J, Rhein M, Glahn A, Frieling H, Karst M. Leptin promoter methylation in female patients with painful multisomatoform disorder and chronic widespread pain. Clin Epigenetics. 2022;14(1):13. doi:10.1186/s13148-022-01235-5
  • Achenbach J, Rhein M, Gombert S, et al. Childhood traumatization is associated with differences in TRPA1 promoter methylation in female patients with multisomatoform disorder with pain as the leading bodily symptom. Clin Epigenetics. 2019;11(1):126. doi:10.1186/s13148-019-0731-0
  • Falkenberg VR, Gurbaxani BM, Unger ER, Rajeevan MS. Functional genomics of serotonin receptor 2A (HTR2A): interaction of polymorphism, methylation, expression and disease association. Neuromolecular Med. 2011;13(1):66–76. doi:10.1007/s12017-010-8138-2
  • Polli A, Ghosh M, Bakusic J, et al. DNA methylation and brain-derived neurotrophic factor expression account for symptoms and widespread hyperalgesia in patients with chronic fatigue syndrome and comorbid fibromyalgia. Arthritis Rheumatol. 2020;72(11):1936–1944. doi:10.1002/art.41405