95
Views
0
CrossRef citations to date
0
Altmetric
Neuropathic Pain

Pain Comorbidities with Attention Deficit: A Narrative Review of Clinical and Preclinical Research

, , &
Pages 1055-1065 | Received 29 Oct 2023, Accepted 23 Feb 2024, Published online: 14 Mar 2024

References

  • Raja SN, Carr DB, Cohen M, et al. The revised international association for the study of pain definition of pain: concepts, challenges, and compromises. Pain. 2020;161(9):1976–1982. doi:10.1097/j.pain.0000000000001939
  • Dahlhamer J, Lucas J, Zelaya C, et al. Prevalence of chronic pain and high-impact chronic pain among adults - United States, 2016. MMWR Morb Mortal Wkly Rep. 2018;67(36):1001–1006. doi:10.15585/mmwr.mm6736a2
  • Katsuki F, Constantinidis C. Bottom-up and top-down attention: different processes and overlapping neural systems. Neuroscientist. 2014;20(5):509–521. doi:10.1177/1073858413514136
  • Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–215. doi:10.1038/nrn755
  • Rischer KM, González-Roldán AM, Montoya P, Gigl S, Anton F, van der Meulen M. Distraction from pain: the role of selective attention and pain catastrophizing. Eur J Pain. 2020;24(10):1880–1891. doi:10.1002/ejp.1634
  • Wm G, Lm D, Rl Q. Cognitive load and the effectiveness of distraction for acute pain in children. Eur J Pain. 2021;25(7). doi:10.1002/ejp.1770
  • Buhle JT, Stevens BL, Friedman JJ, Wager TD. Distraction and placebo: two separate routes to pain control. Psychol Sci. 2012;23(3):246–253. doi:10.1177/0956797611427919
  • Muñoz M, Esteve R. Reports of memory functioning by patients with chronic pain. Clin J Pain. 2005;21(4):287–291. doi:10.1097/01.ajp.0000173993.53733.2e
  • Baker KS, Gibson SJ, Georgiou-Karistianis N, Giummarra MJ. Relationship between self-reported cognitive difficulties, objective neuropsychological test performance and psychological distress in chronic pain. Eur J Pain. 2018;22(3):601–613. doi:10.1002/ejp.1151
  • Silva AF, Zortea M, Carvalho S, et al. Anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex modulates attention and pain in fibromyalgia: randomized clinical trial. Sci Rep. 2017;7(1):135. doi:10.1038/s41598-017-00185-w
  • Dick BD, Rashiq S. Disruption of attention and working memory traces in individuals with chronic pain. Anesth Analg. 2007;104(5):1223–1229. doi:10.1213/01.ane.0000263280.49786.f5.
  • Oosterman JM, Derksen LC, van Wijck AJM, Veldhuijzen DS, Kessels RPC. Memory functions in chronic pain: examining contributions of attention and age to test performance. Clin J Pain. 2011;27(1):70–75. doi:10.1097/AJP.0b013e3181f15cf5
  • Grisart JM, Van der Linden M. Conscious and automatic uses of memory in chronic pain patients. Pain. 2001;94(3):305–313. doi:10.1016/S0304-3959(01)00366-9
  • Legrain V, Damme SV, Eccleston C, Davis KD, Seminowicz DA, Crombez G. A neurocognitive model of attention to pain: behavioral and neuroimaging evidence. Pain. 2009;144(3):230–232. doi:10.1016/j.pain.2009.03.020
  • Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–284. doi:10.1016/j.cell.2009.09.028
  • Gulyaeva NV. molecular mechanisms of neuroplasticity: an expanding universe. Biochemistry. 2017;82(3):237–242. doi:10.1134/S0006297917030014
  • Hart RP, Martelli MF, Zasler ND. Chronic pain and neuropsychological functioning. Neuropsychol Rev. 2000;10(3):131–149. doi:10.1023/a:1009020914358
  • Chen JE, Glover GH. Functional magnetic resonance imaging methods. Neuropsychol Rev. 2015;25(3):289–313. doi:10.1007/s11065-015-9294-9
  • Langner R, Eickhoff SB. Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention. Psychol Bull. 2013;139(4):870–900. doi:10.1037/a0030694
  • Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463–484. doi:10.1016/j.ejpain.2004.11.001
  • Klein TA, Endrass T, Kathmann N, Neumann J, von Cramon DY, Ullsperger M. Neural correlates of error awareness. Neuroimage. 2007;34(4):1774–1781. doi:10.1016/j.neuroimage.2006.11.014
  • Buffington ALH, Hanlon CA, McKeown MJ. Acute and persistent pain modulation of attention-related anterior cingulate fMRI activations. Pain. 2005;113(1–2):172–184. doi:10.1016/j.pain.2004.10.006
  • Ozdemir H, Atmaca M, Yildirim H, Gurok MG. Dorsolateral prefrontal cortex volumes remained unchanged in obsessive compulsive disorder. Published Online. 2013;1. doi:10.5455/bcp.20120928030920
  • Zhang R, Tomida M, Katayama Y, Kawakami Y. Response durations encode nociceptive stimulus intensity in the rat medial prefrontal cortex. Neuroscience. 2004;125(3):777–785. doi:10.1016/j.neuroscience.2004.01.055
  • Onozawa K, Yagasaki Y, Izawa Y, Abe H, Kawakami Y. Amygdala-prefrontal pathways and the dopamine system affect nociceptive responses in the prefrontal cortex. BMC Neurosci. 2011;12:115. doi:10.1186/1471-2202-12-115
  • Ji G, Neugebauer V. Pain-related deactivation of medial prefrontal cortical neurons involves mGluR1 and GABA(A) receptors. J Neurophysiol. 2011;106(5):2642–2652. doi:10.1152/jn.00461.2011
  • Ji G, Sun H, Fu Y, et al. Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J Neurosci. 2010;30(15):5451–5464. doi:10.1523/JNEUROSCI.0225-10.2010
  • Chantiluke K, Barrett N, Giampietro V, et al. Inverse effect of fluoxetine on medial prefrontal cortex activation during reward reversal in ADHD and autism. Cereb Cortex. 2015;25(7):1757–1770. doi:10.1093/cercor/bht365
  • Chantiluke K, Barrett N, Giampietro V, Brammer M, Simmons A, Rubia K. Disorder-dissociated effects of fluoxetine on brain function of working memory in attention deficit hyperactivity disorder and autism spectrum disorder. Psychol Med. 2015;45(6):1195–1205. doi:10.1017/S0033291714002232
  • Augustine JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev. 1996;22(3):229–244. doi:10.1016/s0165-0173(96)00011-2
  • Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214(5–6):655–667. doi:10.1007/s00429-010-0262-0
  • Bossaerts P. Risk and risk prediction error signals in anterior insula. Brain Struct Funct. 2010;214(5–6):645–653. doi:10.1007/s00429-010-0253-1
  • Nelson SM, Dosenbach NUF, Cohen AL, Wheeler ME, Schlaggar BL, Petersen SE. Role of the anterior insula in task-level control and focal attention. Brain Struct Funct. 2010;214(5–6):669–680. doi:10.1007/s00429-010-0260-2
  • Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–2356. doi:10.1523/JNEUROSCI.5587-06.2007
  • Brooks JCW, Nurmikko TJ, Bimson WE, Singh KD, Roberts N. fMRI of thermal pain: effects of stimulus laterality and attention. Neuroimage. 2002;15(2):293–301. doi:10.1006/nimg.2001.0974
  • Bantick SJ, Wise RG, Ploghaus A, Clare S, Smith SM, Tracey I. Imaging how attention modulates pain in humans using functional MRI. Brain. 2002;125(Pt 2):310–319. doi:10.1093/brain/awf022
  • Dong P, Wang H, Shen XF, et al. A novel cortico-intrathalamic circuit for flight behavior. Nat Neurosci. 2019;22(6):941–949. doi:10.1038/s41593-019-0391-6
  • Halassa MM, Chen Z, Wimmer RD, et al. State-dependent architecture of thalamic reticular subnetworks. Cell. 2014;158(4):808–821. doi:10.1016/j.cell.2014.06.025
  • McAlonan K, Cavanaugh J, Wurtz RH. Attentional modulation of thalamic reticular neurons. J Neurosci. 2006;26(16):4444–4450. doi:10.1523/JNEUROSCI.5602-05.2006
  • Krol A, Wimmer RD, Halassa MM, Feng G. Thalamic reticular dysfunction as a circuit endophenotype in neurodevelopmental disorders. Neuron. 2018;98(2):282–295. doi:10.1016/j.neuron.2018.03.021
  • Saletin JM, Coon WG, Carskadon MA. Stage 2 sleep EEG sigma activity and motor learning in childhood ADHD: a pilot study. J Clin Child Adolesc Psychol. 2017;46(2):188–197. doi:10.1080/15374416.2016.1157756
  • Steullet P, Cabungcal JH, Bukhari SA, et al. The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress. Mol Psychiatry. 2018;23(10):2057–2065. doi:10.1038/mp.2017.230
  • Rohampour K, Azizi H, Fathollahi Y, Semnanian S. Peripheral nerve injury potentiates excitatory synaptic transmission in locus coeruleus neurons. Brain Res Bull. 2017;130:112–117. doi:10.1016/j.brainresbull.2017.01.012
  • Milstein JA, Lehmann O, Theobald DEH, Dalley JW, Robbins TW. Selective depletion of cortical noradrenaline by anti-dopamine beta-hydroxylase-saporin impairs attentional function and enhances the effects of guanfacine in the rat. Psychopharmacology. 2007;190(1):51–63. doi:10.1007/s00213-006-0594-x
  • M J, Rs R, E H. Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience. 2008;153(1). doi:10.1016/j.neuroscience.2008.01.064
  • Moazen P, Torabi M, Azizi H, Fathollahi Y, Mirnajafi-Zadeh J, Semnanian S. The locus coeruleus noradrenergic system gates deficits in visual attention induced by chronic pain. Behav Brain Res. 2020;387:112600. doi:10.1016/j.bbr.2020.112600
  • Radzicki D, Pollema-Mays SL, Sanz-Clemente A, Martina M. Loss of m1 receptor dependent cholinergic excitation contributes to mpfc deactivation in neuropathic pain. J Neurosci. 2017;37(9):2292–2304. doi:10.1523/JNEUROSCI.1553-16.2017
  • Martikainen IK, Nuechterlein EB, Peciña M, et al. Chronic back pain is associated with alterations in dopamine neurotransmission in the ventral striatum. J Neurosci. 2015;35(27):9957–9965. doi:10.1523/JNEUROSCI.4605-14.2015
  • Enna SJ, McCarson KE. The role of GABA in the mediation and perception of pain. Adv Pharmacol. 2006;54:1–27. doi:10.1016/s1054-3589(06)54001-3
  • Enna SJ, Harstad EB, McCarson KE. Regulation of neurokinin-1 receptor expression by GABA(B) receptor agonists. Life Sci. 1998;62(17–18):1525–1530. doi:10.1016/s0024-3205(98)00101-5
  • Green GM, Dickenson A. GABA-receptor control of the amplitude and duration of the neuronal responses to formalin in the rat spinal cord. Eur J Pain. 1997;1(2):95–104. doi:10.1016/s1090-3801(97)90067-7
  • Nagai J, Rajbhandari AK, Gangwani MR, et al. Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell. 2019;177(5):1280–1292.e20. doi:10.1016/j.cell.2019.03.019
  • Malan TP, Mata HP, Porreca F. Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology. 2002;96(5):1161–1167. doi:10.1097/00000542-200205000-00020
  • Tsuruoka M, Tamaki J, Maeda M, Hayashi B, Inoue T. Biological implications of coeruleospinal inhibition of nociceptive processing in the spinal cord. Front Integr Neurosci. 2012;6:87. doi:10.3389/fnint.2012.00087
  • Kimura M, Suto T, Morado-Urbina CE, Peters CM, Eisenach JC, Hayashida KI. Impaired pain-evoked analgesia after nerve injury in rats reflects altered glutamate regulation in the locus coeruleus. Anesthesiology. 2015;123(4):899–908. doi:10.1097/ALN.0000000000000796
  • Howorth PW, Teschemacher AG, Pickering AE. Retrograde adenoviral vector targeting of nociresponsive pontospinal noradrenergic neurons in the rat in vivo. J Comp Neurol. 2009;512(2):141–157. doi:10.1002/cne.21879
  • Singewald N, Philippu A. Release of neurotransmitters in the locus coeruleus. Prog Neurobiol. 1998;56(2):237–267. doi:10.1016/s0301-0082(98)00039-2
  • Loughlin SE, Foote SL, Grzanna R. Efferent projections of nucleus locus coeruleus: morphologic subpopulations have different efferent targets. Neuroscience. 1986;18(2):307–319. doi:10.1016/0306-4522(86)90156-9
  • Paterson NE, Wetzler C, Hackett A, Hanania T. Impulsive action and impulsive choice are mediated by distinct neuropharmacological substrates in rat. Int J Neuropsychopharmacol. 2012;15(10):1473–1487. doi:10.1017/S1461145711001635
  • Roychowdhury S, Peña-Contreras Z, Tam J, et al. α₂- and β-adrenoceptors involvement in nortriptyline modulation of auditory sustained attention and impulsivity. Psychopharmacology. 2012;222(2):237–245. doi:10.1007/s00213-012-2635-y
  • Sasamori H, Ohmura Y, Yoshida T, Yoshioka M. Noradrenaline reuptake inhibition increases control of impulsive action by activating D1-like receptors in the infralimbic cortex. Eur J Pharmacol. 2019;844:17–25. doi:10.1016/j.ejphar.2018.11.041
  • Pattij T, Schetters D, Schoffelmeer ANM, van Gaalen MM. On the improvement of inhibitory response control and visuospatial attention by indirect and direct adrenoceptor agonists. Psychopharmacology. 2012;219(2):327–340. doi:10.1007/s00213-011-2405-2
  • Arnsten AF, Scahill L, Findling RL. alpha2-Adrenergic receptor agonists for the treatment of attention-deficit/hyperactivity disorder: emerging concepts from new data. J Child Adolesc Psychopharmacol. 2007;17(4):393–406. doi:10.1089/cap.2006.0098
  • Taylor FB, Russo J. Comparing guanfacine and dextroamphetamine for the treatment of adult attention-deficit/hyperactivity disorder. J Clin Psychopharmacol. 2001;21(2):223–228. doi:10.1097/00004714-200104000-00015
  • Bari A, Robbins TW. Noradrenergic versus dopaminergic modulation of impulsivity, attention and monitoring behaviour in rats performing the stop-signal task: possible relevance to ADHD. Psychopharmacology. 2013;230(1):89–111. doi:10.1007/s00213-013-3141-6
  • Jeong CY, Choi JI, Yoon MH. Roles of serotonin receptor subtypes for the antinociception of 5-HT in the spinal cord of rats. Eur J Pharmacol. 2004;502(3):205–211. doi:10.1016/j.ejphar.2004.08.048
  • Dogrul A, Ossipov MH, Porreca F. Differential mediation of descending pain facilitation and inhibition by spinal 5HT-3 and 5HT-7 receptors. Brain Res. 2009;1280:52–59. doi:10.1016/j.brainres.2009.05.001
  • Mico JA, Berrocoso E, Ortega-Alvaro A, Gibert-Rahola J, Rojas-Corrales MO. The role of 5-HT1A receptors in research strategy for extensive pain treatment. Curr Top Med Chem. 2006;6(18):1997–2003. doi:10.2174/156802606778522195
  • Hirvonen J, Kajander J, Allonen T, et al. Measurement of serotonin 5-HT1A receptor binding using positron emission tomography and [carbonyl-(11)C]WAY-100635-considerations on the validity of cerebellum as a reference region. J Cereb Blood Flow Metab. 2007;27(1):185–195. doi:10.1038/sj.jcbfm.9600326
  • Martikainen IK, Hirvonen J, Kajander J, et al. Correlation of human cold pressor pain responses with 5-HT(1A) receptor binding in the brain. Brain Res. 2007;1172:21–31. doi:10.1016/j.brainres.2007.07.036
  • Xie H, Dong ZQ, Ma F, Bauer WR, Wang X, Wu GC. Involvement of serotonin 2A receptors in the analgesic effect of tramadol in mono-arthritic rats. Brain Res. 2008;1210:76–83. doi:10.1016/j.brainres.2008.02.049
  • Koskinen T, Ruotsalainen S, Puumala T, et al. Activation of 5-HT2A receptors impairs response control of rats in a five-choice serial reaction time task. Neuropharmacology. 2000;39(3):471–481. doi:10.1016/s0028-3908(99)00159-8
  • Passetti F, Dalley JW, Robbins TW. Double dissociation of serotonergic and dopaminergic mechanisms on attentional performance using a rodent five-choice reaction time task. Psychopharmacology. 2003;165(2):136–145. doi:10.1007/s00213-002-1227-7
  • Carli M, Baviera M, Invernizzi RW, Balducci C. Dissociable contribution of 5-HT1A and 5-HT2A receptors in the medial prefrontal cortex to different aspects of executive control such as impulsivity and compulsive perseveration in rats. Neuropsychopharmacology. 2006;31(4):757–767. doi:10.1038/sj.npp.1300893
  • A S, Mel-S H. The 5-HT2A serotonin receptor in executive function: implications for neuropsychiatric and neurodegenerative diseases. Neurosci Biobehav Rev. 2016;64. doi:10.1016/j.neubiorev.2016.02.008
  • Lucas-Meunier E, Fossier P, Baux G, Amar M. Cholinergic modulation of the cortical neuronal network. Pflugers Arch. 2003;446(1):17–29. doi:10.1007/s00424-002-0999-2
  • Hasselmo ME, Sarter M. Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology. 2011;36(1):52–73. doi:10.1038/npp.2010.104
  • Dalley JW, Theobald DE, Bouger P, Chudasama Y, Cardinal RN, Robbins TW. Cortical cholinergic function and deficits in visual attentional performance in rats following 192 IgG-saporin-induced lesions of the medial prefrontal cortex. Cereb Cortex. 2004;14(8):922–932. doi:10.1093/cercor/bhh052
  • St Peters M, Demeter E, Lustig C, Bruno JP, Sarter M. Enhanced control of attention by stimulating mesolimbic-corticopetal cholinergic circuitry. J Neurosci. 2011;31(26):9760–9771. doi:10.1523/JNEUROSCI.1902-11.2011
  • Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66(6):355–474. doi:10.1016/s0301-0082(02)00009-6
  • Jones PG, Dunlop J. Targeting the cholinergic system as a therapeutic strategy for the treatment of pain. Neuropharmacology. 2007;53(2):197–206. doi:10.1016/j.neuropharm.2007.04.002
  • Tata AM. Muscarinic acetylcholine receptors: new potential therapeutic targets in antinociception and in cancer therapy. Recent Pat CNS Drug Discov. 2008;3(2):94–103. doi:10.2174/157488908784534621
  • Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov. 2007;6(9):721–733. doi:10.1038/nrd2379
  • Wood PB, Schweinhardt P, Jaeger E, et al. Fibromyalgia patients show an abnormal dopamine response to pain. Eur J Neurosci. 2007;25(12):3576–3582. doi:10.1111/j.1460-9568.2007.05623.x
  • Wood PB, Patterson JC, Sunderland JJ, Tainter KH, Glabus MF, Lilien DL. Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study. J Pain. 2007;8(1):51–58. doi:10.1016/j.jpain.2006.05.014
  • Narita M, Ozaki S, Narita M, Ise Y, Yajima Y, Suzuki T. Change in the expression of c-fos in the rat brain following sciatic nerve ligation. Neurosci Lett. 2003;352(3):231–233. doi:10.1016/j.neulet.2003.08.052
  • Arnsten AFT, Rubia K. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. J Am Acad Child Adolesc Psychiatry. 2012;51(4):356–367. doi:10.1016/j.jaac.2012.01.008
  • Matsumoto M, Takada M. Distinct representations of cognitive and motivational signals in midbrain dopamine neurons. Neuron. 2013;79(5):1011–1024. doi:10.1016/j.neuron.2013.07.002
  • Boekhoudt L, Voets ES, Flores-Dourojeanni JP, Luijendijk MC, Vanderschuren LJ, Adan RA. Chemogenetic activation of midbrain dopamine neurons affects attention, but not impulsivity, in the five-choice serial reaction time task in rats. Neuropsychopharmacology. 2017;42(6):1315–1325. doi:10.1038/npp.2016.235
  • McCaul KD, Monson N, Maki RH. Does distraction reduce pain-produced distress among college students? Health Psychol. 1992;11(4):210–217. doi:10.1037//0278-6133.11.4.210
  • Goubert L, Crombez G, Eccleston C, Devulder J. Distraction from chronic pain during a pain-inducing activity is associated with greater post-activity pain. Pain. 2004;110(1–2):220–227. doi:10.1016/j.pain.2004.03.034
  • Oosterman JM, Traxler J, Kunz M. The influence of executive functioning on facial and subjective pain responses in older adults. Behav Neurol. 2016;2016:1984827. doi:10.1155/2016/1984827
  • Zhou S, Després O, Pebayle T, Dufour A. Age-related decline in cognitive pain modulation induced by distraction: evidence from event-related potentials. J Pain. 2015;16(9):862–872. doi:10.1016/j.jpain.2015.05.012
  • Hadley G, Novitch MB. CBT and CFT for Chronic Pain. Curr Pain Headache Rep. 2021;25(5):35. doi:10.1007/s11916-021-00948-1