263
Views
0
CrossRef citations to date
0
Altmetric
Musculoskeletal Pain/Rehabilitation

Understanding of Spinal Wide Dynamic Range Neurons and Their Modulation on Pathological Pain

, ORCID Icon, &
Pages 441-457 | Received 26 Oct 2023, Accepted 12 Jan 2024, Published online: 31 Jan 2024

References

  • D’Mello R, Dickenson AH. Spinal cord mechanisms of pain. Br J Anaesth. 2008;101(1):8–16. doi:10.1093/bja/aen088
  • Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–979. doi:10.1126/science.150.3699.971
  • Yang F, Zhang T, Tiwari V, et al. Effects of combined electrical stimulation of the dorsal column and dorsal roots on wide-dynamic-range neuronal activity in nerve-injured rats. Neuromodulation. 2015;18(7):592–598.
  • Roch M, Messlinger K, Kulchitsky V, et al. Ongoing activity in trigeminal wide-dynamic range neurons is driven from the periphery. Neuroscience. 2007;150(3):681–691. doi:10.1016/j.neuroscience.2007.09.032
  • Cai J, Fang D, Liu X-D, et al. Suppression of KCNQ/M (Kv7) potassium channels in the spinal cord contributes to the sensitization of dorsal horn WDR neurons and pain hypersensitivity in a rat model of bone cancer pain. Oncol Rep. 2015;33(3):1540–1550. doi:10.3892/or.2015.3718
  • Le Bars D. The whole body receptive field of dorsal horn multireceptive neurones. Brain Res. 2002;40(1–3):29–44. doi:10.1016/S0165-0173(02)00186-8
  • Craig AD. Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci. 2003;26(1):1–30. doi:10.1146/annurev.neuro.26.041002.131022
  • Yang F, Xu Q, Cheong Y-K, et al. Comparison of intensity-dependent inhibition of spinal wide-dynamic range neurons by dorsal column and peripheral nerve stimulation in a rat model of neuropathic pain. Eur J Pain. 2014;18(7):978–988. doi:10.1002/j.1532-2149.2013.00443.x
  • Meesawatsom P, Burston J, Hathway G, Bennett A, Chapman V. Inhibitory effects of aspirin-triggered resolvin D1 on spinal nociceptive processing in rat pain models. J Neuroinflammation. 2016;13(1):233. doi:10.1186/s12974-016-0676-6
  • Tiwari V, He SQ, Huang Q, et al. Activation of micro-delta opioid receptor heteromers inhibits neuropathic pain behavior in rodents. Pain. 2020;161(4):842–855. doi:10.1097/j.pain.0000000000001768
  • Tiwari V, Anderson M, Yang F, et al. Peripherally acting μ-opioid receptor agonists attenuate ongoing pain-associated behavior and spontaneous neuronal activity after nerve injury in rats. Anesthesiology. 2018;128(6):1220–1236. doi:10.1097/ALN.0000000000002191
  • Guan Y, Borzan J, Meyer RA, Raja SN. Windup in dorsal horn neurons is modulated by endogenous spinal mu-opioid mechanisms. J Neurosci. 2006;26(16):4298–4307. doi:10.1523/JNEUROSCI.0960-06.2006
  • Rygh LJ, Kontinen VK, Suzuki R, Dickenson AH. Different increase in C-fibre evoked responses after nociceptive conditioning stimulation in sham-operated and neuropathic rats. Neurosci Lett. 2000;288(2):99–102. doi:10.1016/S0304-3940(00)01201-5
  • Nazemi S, Manaheji H, Noorbakhsh SM, et al. Inhibition of microglial activity alters spinal wide dynamic range neuron discharge and reduces microglial Toll-like receptor 4 expression in neuropathic rats. Clin Exp Pharmacol Physiol. 2015;42(7):772–779. doi:10.1111/1440-1681.12414
  • Luo H, Xu IS, Chen Y, et al. Behavioral and electrophysiological evidence for the differential functions of TRPV1 at early and late stages of chronic inflammatory nociception in rats. Neurochem Res. 2008;33(10):2151–2158. doi:10.1007/s11064-008-9751-4
  • Nackley AG, Zvonok AM, Makriyannis A, Hohmann AG. Activation of cannabinoid CB2 receptors suppresses C-fiber responses and windup in spinal wide dynamic range neurons in the absence and presence of inflammation. J Neurophysiol. 2004;92(6):3562–3574. doi:10.1152/jn.00886.2003
  • Yang F, Zhang C, Xu Q, et al. Electrical stimulation of dorsal root entry zone attenuates wide-dynamic-range neuronal activity in rats. Neuromodulation. 2015;18(1):33–40.
  • Hentall ID, Hargraves WA, Sagen J. Inhibition by the chromaffin cell-derived peptide serine-histogranin in the rat’s dorsal horn. Neurosci Lett. 2007;419(1):88–92. doi:10.1016/j.neulet.2007.03.056
  • Guo JD, Wang H, Zhang YQ, Zhao ZQ. Distinct effects of D-serine on spinal nociceptive responses in normal and carrageenan-injected rats. Biochem Biophys Res Commun. 2006;343(2):401–406. doi:10.1016/j.bbrc.2006.02.156
  • Hidaka S, Kanai Y, Takehana S, et al. Systemic administration of α-lipoic acid suppresses excitability of nociceptive wide-dynamic range neurons in rat spinal trigeminal nucleus caudalis. Neurosci Res. 2019;144:14–20. doi:10.1016/j.neures.2018.06.003
  • Yang F, Zhang C, Xu Q, et al. Electrical stimulation of dorsal root entry zone attenuates wide-dynamic-range neuronal activity in rats. Neuromodulation. 2014;18(1):33–40; discussion 40. doi:10.1111/ner.12249
  • Itou H, Toyota R, Takeda M. Phytochemical quercetin alleviates hyperexcitability of trigeminal nociceptive neurons associated with inflammatory hyperalgesia comparable to NSAIDs. Molecular Pain. 2022;18:17448069221108971. doi:10.1177/17448069221108971
  • Lessans S, Lassiter CB, Carozzi V, et al. Global transcriptomic profile of dorsal root ganglion and physiological correlates of cisplatin-induced peripheral neuropathy. Nursing Research. 2019;68(2):145–155. doi:10.1097/NNR.0000000000000338
  • Flores Ramos JM, Devoize L, Descheemaeker A, et al. The nitric oxide donor, isosorbide dinitrate, induces a cephalic cutaneous hypersensitivity, associated with sensitization of the medullary dorsal horn. Neuroscience. 2017;344:157–166. doi:10.1016/j.neuroscience.2016.12.028
  • González-Hernández A, Espinosa De Los Monteros-Zuñiga A, Martínez-Lorenzana G, Condés-Lara M. Recurrent antinociception induced by intrathecal or peripheral oxytocin in a neuropathic pain rat model. Exp Brain Res. 2019;237(11):2995–3010. doi:10.1007/s00221-019-05651-7
  • Ikeda A, Muroki A, Suzuki C, Shimazu Y, Takeda M. Resolvin D1 suppresses inflammation-induced hyperexcitability of nociceptive trigeminal neurons associated with mechanical hyperalgesia. Brain Res Bull. 2020;154:61–67. doi:10.1016/j.brainresbull.2019.11.002
  • Fan Y, Ryu Y, Zhao R, et al. Enhanced spinal neuronal responses as a mechanism for increased number and size of active acupoints in visceral hyperalgesia. Sci Rep. 2020;10(1):10312. doi:10.1038/s41598-020-67242-9
  • Syoji Y, Kobayashi R, Miyamura N, et al. Suppression of hyperexcitability of trigeminal nociceptive neurons associated with inflammatory hyperalgesia following systemic administration of lutein via inhibition of cyclooxygenase-2 cascade signaling. J Inflam. 2018;15(1):24. doi:10.1186/s12950-018-0200-0
  • Rezaee L, Manaheji Hhaghparast H, Haghparast A. Role of spinal glial cells in excitability of wide dynamic range neurons and the development of neuropathic pain with the L5 spinal nerve transection in the rats: behavioral and electrophysiological study. Physiol Behav. 2019;209:112597. doi:10.1016/j.physbeh.2019.112597
  • López-Córdoba G, Martínez-Lorenzana G, Lozano-Cuenca J, Condés-Lara M, González-Hernández A. The differential contribution of spinal α- and α-adrenoceptors in tonic and acute evoked nociception in the rat. Front Pharmacol. 2022;13:1023611. doi:10.3389/fphar.2022.1023611
  • McGaraughty S, Chu KL, Xu J. Characterization and pharmacological modulation of noci-responsive deep dorsal horn neurons across diverse rat models of pathological pain. J Neurophysiol. 2018;120(4):1893–1905. doi:10.1152/jn.00325.2018
  • Takehana S, Kubota Y, Uotsu N, et al. Acute intravenous administration of dietary constituent theanine suppresses noxious neuronal transmission of trigeminal spinal nucleus caudalis in rats. Brain Res Bull. 2017;131:70–77. doi:10.1016/j.brainresbull.2017.03.004
  • Johnson MP, Muhlhauser MA, Nisenbaum ES, et al. Broad spectrum efficacy with LY2969822, an oral prodrug of metabotropic glutamate 2/3 receptor agonist LY2934747, in rodent pain models. Br J Pharmacol. 2017;174(9):822–835. doi:10.1111/bph.13740
  • Lee MC, Nam TS, Jung SJ, Gwak YS, Leem JW. Modulation of spinal GABAergic inhibition and mechanical hypersensitivity following chronic compression of dorsal root ganglion in the rat. Neural Plast. 2015;2015:924728. doi:10.1155/2015/924728
  • Glitsch MD. Spontaneous neurotransmitter release and Ca2+--how spontaneous is spontaneous neurotransmitter release? Cell Calcium. 2008;43(1):9–15. doi:10.1016/j.ceca.2007.02.008
  • Yamaguchi M, Kinouchi R, Morizumi S, Shimazu Y, Takeda M. Local administration of genistein as a local anesthetic agent inhibits the trigeminal nociceptive neuronal activity in rats. Brain Res Bull. 2021;172:120–128. doi:10.1016/j.brainresbull.2021.04.015
  • Barter LS, Carstens EE, Jinks SL, Antognini JF. Rat dorsal horn nociceptive-specific neurons are more sensitive than wide dynamic range neurons to depression by immobilizing doses of volatile anesthetics: an effect partially reversed by the opioid receptor antagonist naloxone. Anesthesia Analg. 2009;109(2):641–647. doi:10.1213/ane.0b013e3181a9770f
  • Chao D, Mecca CM, Yu G, et al. Dorsal root ganglion stimulation of injured sensory neurons in rats rapidly eliminates their spontaneous activity and relieves spontaneous pain. Pain. 2021;162(12):2917–2932. doi:10.1097/j.pain.0000000000002284
  • Sun XY, Chen LZ, Wan HY, et al. Inhibitory effects of local acupoint electrostimulation with different intensities and layers on muscular inflammatory pain and WDR neuron activity in rats. Acupuncture Res. 2023:1–10. doi:10.13702/j.1000-0607.20221248
  • Nakatsuka T, Park J-S, Kumamoto E, Tamaki T, Yoshimura M. Plastic changes in sensory inputs to rat substantia gelatinosa neurons following peripheral inflammation. Pain. 1999;82(1):39–47. doi:10.1016/S0304-3959(99)00037-8
  • Xie R-G, Gao Y-J, Park C-K, et al. Spinal CCL2 promotes central sensitization, long-term potentiation, and inflammatory pain via CCR2: further insights into molecular, synaptic, and cellular mechanisms. Neurosci Bull. 2018;34(1):13–21. doi:10.1007/s12264-017-0106-5
  • Sullivan SJ, Sdrulla AD. Excitatory and inhibitory neurons of the spinal cord superficial dorsal horn diverge in their somatosensory responses and plasticity in vivo. J Neurosci. 2022;42(10):1958–1973. doi:10.1523/JNEUROSCI.1860-21.2021
  • Yang Y, Li H, Li T-T, et al. Delayed activation of spinal microglia contributes to the maintenance of bone cancer pain in female Wistar rats via P2X7 receptor and IL-18. J Neurosci. 2015;35(20):7950–7963. doi:10.1523/JNEUROSCI.5250-14.2015
  • Kozlowski CM, Bountra C, Grundy D. The effect of fentanyl, DNQX and MK-801 on dorsal horn neurones responsive to colorectal distension in the anaesthetized rat. Neurogastroenterol Motil. 2000;12(3):239–247. doi:10.1046/j.1365-2982.2000.00205.x
  • Ririe DG, Bremner LR, Fitzgerald M. Comparison of the immediate effects of surgical incision on dorsal horn neuronal receptive field size and responses during postnatal development. Anesthesiology. 2008;109(4):698–706. doi:10.1097/ALN.0b013e3181870a32
  • Zain M, Bonin RP. Alterations in evoked and spontaneous activity of dorsal horn wide dynamic range neurons in pathological pain: a systematic review and analysis. Pain. 2019;160(10):2199–2209. doi:10.1097/j.pain.0000000000001632
  • Jhaveri MD, Elmes SJR, Kendall DA, Chapman V. Inhibition of peripheral vanilloid TRPV1 receptors reduces noxious heat-evoked responses of dorsal horn neurons in naïve, carrageenan-inflamed and neuropathic rats. Eur J Neurosci. 2005;22(2):361–370. doi:10.1111/j.1460-9568.2005.04227.x
  • Sawyer CM, Carstens MI, Carstens E. Mustard oil enhances spinal neuronal responses to noxious heat but not cooling. Neurosci Lett. 2009;461(3):271–274. doi:10.1016/j.neulet.2009.06.036
  • Li D, Chung G, Kim SK. The involvement of central noradrenergic pathway in the analgesic effect of bee venom acupuncture on vincristine-induced peripheral neuropathy in rats. Toxins. 2020;12(12):775.
  • Xu J, Chu KL, Brederson J-D, Jarvis MF, McGaraughty S. Spontaneous firing and evoked responses of spinal nociceptive neurons are attenuated by blockade of P2X3 and P2X2/3 receptors in inflamed rats. J Neurosci Res. 2012;90(8):1597–1606. doi:10.1002/jnr.23042
  • Malick A, Strassman RM, Burstein R. Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol. 2000;84(4):2078–2112. doi:10.1152/jn.2000.84.4.2078
  • Kenshalo DR, Iwata K, Sholas M, Thomas DA. Response properties and organization of nociceptive neurons in area 1 of monkey primary somatosensory cortex. J Neurophysiol. 2000;84(2):719–729. doi:10.1152/jn.2000.84.2.719
  • Coghill RC, Mayer DJ, Price DD, et al. Wide dynamic range but not nociceptive-specific neurons encode multidimensional features of prolonged repetitive heat pain. J Neurophysiol. 1993;69(3):703–716. doi:10.1152/jn.1993.69.3.703
  • Herrero JF, Headley MP. The dominant class of somatosensory neurone recorded in the spinal dorsal horn of awake sheep has wide dynamic range properties. Pain. 1995;61(1):133–138. doi:10.1016/0304-3959(94)00152-5
  • Medrano MC, Dhanasobhon D, Yalcin I, Schlichter R, Cordero-Erausquin M. Loss of inhibitory tone on spinal cord dorsal horn spontaneously and nonspontaneously active neurons in a mouse model of neuropathic pain. Pain. 2016;157(7):1432–1442. doi:10.1097/j.pain.0000000000000538
  • Hao J-X, Kupers RC, Xu X-J. Response characteristics of spinal cord dorsal horn neurons in chronic allodynic rats after spinal cord injury. J Neurophysiol. 2004;92(3):1391–1399. doi:10.1152/jn.00121.2004
  • Urch EC, Donovan-Rodriguez T, Dickenson HA. Alterations in dorsal horn neurones in a rat model of cancer-induced bone pain. Pain. 2003;106(3):347–356. doi:10.1016/j.pain.2003.08.002
  • Tan AM, Samad OA, Fischer TZ, et al. Maladaptive dendritic spine remodeling contributes to diabetic neuropathic pain. J Neurosci. 2012;32(20):6795–6807. doi:10.1523/JNEUROSCI.1017-12.2012
  • Tan AM, Samad OA, Liu S, et al. Burn injury-induced mechanical allodynia is maintained by Rac1-regulated dendritic spine dysgenesis. Exp Neurol. 2013;248:509–519. doi:10.1016/j.expneurol.2013.07.017
  • Li J, Simone DA, Larson AA. Windup leads to characteristics of central sensitization. Pain. 1999;79(1):75–82. doi:10.1016/S0304-3959(98)00154-7
  • Guan Y, Raja SN. Wide-dynamic-range neurons are heterogeneous in windup responsiveness to changes in stimulus intensity and isoflurane anesthesia level in mice. J Neurosci Res. 2010;88(10):2272–2283. doi:10.1002/jnr.22383
  • Herrero JF, Laird JM, López-García JA. Wind-up of spinal cord neurones and pain sensation: much ado about something? Progr Neurobiol. 2000;61(2):169–203. doi:10.1016/S0301-0082(99)00051-9
  • Arendt-Nielsen L, Mansikka H, Staahl C, et al. A translational study of the effects of ketamine and pregabalin on temporal summation of experimental pain. Reg Anesth Pain Med. 2011;36(6):585–591. doi:10.1097/AAP.0b013e31822b0db0
  • Coste J, Voisin DL, Luccarini R, Dallel R. A role for wind-up in trigeminal sensory processing: intensity coding of nociceptive stimuli in the rat. Cephalalgia. 2008;28(6):631–639. doi:10.1111/j.1468-2982.2008.01568.x
  • Huang Y, Chen SR, Chen H, et al. Theta-burst stimulation of primary afferents drives long-term potentiation in the spinal cord and persistent pain via alpha2delta-1-bound NMDA receptors. J Neurosci. 2021;42(3):513–527.
  • Xu Q, Ford NC, He S, et al. Astrocytes contribute to pain gating in the spinal cord. Sci Adv. 2021;7(45):eabi6287. doi:10.1126/sciadv.abi6287
  • Yu Q, Cao W, Wang X, et al. The effect of pre-electroacupuncture on nociceptive discharges of spinal wide dynamic range neurons in rat. J Pain Res. 2023;16:695–706. doi:10.2147/JPR.S396481
  • Bi Y, Wei Z, Kong Y, Hu L. Supraspinal neural mechanisms of the analgesic effect produced by transcutaneous electrical nerve stimulation. Brain Struct Funct. 2021;226(1):151–162. doi:10.1007/s00429-020-02173-9
  • Le Bars D, Dickenson AH, Besson J-M. Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain. 1979;6(3):283–304. doi:10.1016/0304-3959(79)90049-6
  • Le Bars D, Dickenson AH, Besson J-M. Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain. 1979;6(3):305–327. doi:10.1016/0304-3959(79)90050-2
  • Okada K, Murase K, Kawakita K. Effects of electrical stimulation of thalamic nucleus submedius and periaqueductal gray on the visceral nociceptive responses of spinal dorsal horn neurons in the rat. Brain Res. 1999;834(1–2):112–121. doi:10.1016/S0006-8993(99)01593-0
  • Yu -L-L, Li L, Rong P-J, et al. Changes in responses of neurons in spinal and medullary subnucleus reticularis dorsalis to acupoint stimulation in rats with visceral hyperalgesia. Evid Based Complement Alternat Med. 2014;2014:768634. doi:10.1155/2014/768634
  • Li L, Yu L, Rong P, et al. Visceral nociceptive afferent facilitates reaction of subnucleus reticularis dorsalis to acupoint stimulation in rats. Evid Based Complement Alternat Med. 2013;2013:931283. doi:10.1155/2013/931283
  • Graham BA, Hughes DI. Defining populations of dorsal horn interneurons. Pain. 2020;161(11):2434–2436. doi:10.1097/j.pain.0000000000002067
  • Peirs C, Dallel R, Todd AJ. Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia. J Neural Transm. 2020;127(4):505–525. doi:10.1007/s00702-020-02159-1
  • Aguiar P, Sousa M, Lima D. NMDA channels together with L-type calcium currents and calcium-activated nonspecific cationic currents are sufficient to generate windup in WDR neurons. J Neurophysiol. 2010;104(2):1155–1166. doi:10.1152/jn.00834.2009
  • Pedersen LM, Gjerstad J. Spinal cord long-term potentiation is attenuated by the NMDA-2B receptor antagonist Ro 25-6981. Acta Physiol. 2008;192(3):421–427. doi:10.1111/j.1748-1716.2007.01756.x
  • Martin YB, Malmierca E, Avendaño C, Nuñez A. Neuronal disinhibition in the trigeminal nucleus caudalis in a model of chronic neuropathic pain. Eur J Neurosci. 2010;32(3):399–408. doi:10.1111/j.1460-9568.2010.07302.x
  • Jergova S, Hentall ID, Gajavelli S, Varghese MS, Sagen J. Intraspinal transplantation of GABAergic neural progenitors attenuates neuropathic pain in rats: a pharmacologic and neurophysiological evaluation. Exp Neurol. 2012;234(1):39–49. doi:10.1016/j.expneurol.2011.12.005
  • Fujiwara Y, Koga K, Nakamura NH, et al. Optogenetic inhibition of spinal inhibitory neurons facilitates mechanical responses of spinal wide dynamic range neurons and causes mechanical hypersensitivity. Neuropharmacology. 2023;242:109763. doi:10.1016/j.neuropharm.2023.109763
  • Phelps CE, Navratilova E, Dickenson AH, Porreca F, Bannister K. Kappa opioid signaling in the right central amygdala causes hind paw specific loss of diffuse noxious inhibitory controls in experimental neuropathic pain. Pain. 2019;160(7):1614–1621. doi:10.1097/j.pain.0000000000001553
  • Chen W-H, Lien C-C, Chen C-C. Neuronal basis for pain-like and anxiety-like behaviors in the central nucleus of the amygdala. Pain. 2022;163(3):e463–e475. doi:10.1097/j.pain.0000000000002389
  • Neugebauer V, Mazzitelli M, Cragg B, et al. Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology. 2020;170:108052. doi:10.1016/j.neuropharm.2020.108052
  • Li J-N, Sheets PL. The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain. J Physiol. 2018;596(24):6289–6305. doi:10.1113/JP276935
  • Winters BL, Lau BK, Vaughan CW. Cannabinoids and opioids differentially target extrinsic and intrinsic gabaergic inputs onto the periaqueductal grey descending pathway. J Neurosci. 2022;42(41):7744–7756. doi:10.1523/JNEUROSCI.0997-22.2022
  • Mazzitelli M, Marshall K, Pham A, Ji G, Neugebauer V. Optogenetic manipulations of amygdala neurons modulate spinal nociceptive processing and behavior under normal conditions and in an arthritis pain model. Front Pharmacol. 2021;12:668337. doi:10.3389/fphar.2021.668337
  • Hein M, Ji G, Tidwell D, et al. Kappa opioid receptor activation in the amygdala disinhibits CRF neurons to generate pain-like behaviors. Neuropharmacology. 2021;185:108456. doi:10.1016/j.neuropharm.2021.108456
  • Ji G, Neugebauer V. Kappa opioid receptors in the central amygdala modulate spinal nociceptive processing through an action on amygdala CRF neurons. Molecular Brain. 2020;13(1):128. doi:10.1186/s13041-020-00669-3
  • Eliava M, Melchior M, Knobloch-Bollmann HS, et al. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron. 2016;89(6):1291–1304. doi:10.1016/j.neuron.2016.01.041
  • Iwasaki M, Lefevre A, Althammer F, et al. An analgesic pathway from parvocellular oxytocin neurons to the periaqueductal gray in rats. Nat Commun. 2023;14(1):1066. doi:10.1038/s41467-023-36641-7
  • DeLaTorre S, Rojas-Piloni G, Martínez-Lorenzana G, et al. Paraventricular oxytocinergic hypothalamic prevention or interruption of long-term potentiation in dorsal horn nociceptive neurons: electrophysiological and behavioral evidence. Pain. 2009;144(3):320–328. doi:10.1016/j.pain.2009.05.002
  • Rojas-Piloni G, Mejía-Rodríguez R, Martínez-Lorenzana J, Condés-Lara M, Miguel C-L. Oxytocin, but not vassopressin, modulates nociceptive responses in dorsal horn neurons. Neurosci Lett. 2010;476(1):32–35. doi:10.1016/j.neulet.2010.03.076
  • Rojas-Piloni G, López-Hidalgo M, Martínez-Lorenzana G, Rodríguez-Jiménez J, Condés-Lara M. GABA-mediated oxytocinergic inhibition in dorsal horn neurons by hypothalamic paraventricular nucleus stimulation. Brain Res. 2007;1137(1):69–77. doi:10.1016/j.brainres.2006.12.045
  • Nishimura H, Yoshimura M, Shimizu M, et al. Endogenous oxytocin exerts anti-nociceptive and anti-inflammatory effects in rats. Commun Biol. 2022;5(1):907. doi:10.1038/s42003-022-03879-8
  • Chiang MC, Bowen A, Schier LA, et al. Parabrachial complex: a hub for pain and aversion. J Neurosci. 2019;39(42):8225–8230. doi:10.1523/JNEUROSCI.1162-19.2019
  • Yang H, de Jong JW, Cerniauskas I, et al. Pain modulates dopamine neurons via a spinal-parabrachial-mesencephalic circuit. Nat Neurosci. 2021;24(10):1402–1413. doi:10.1038/s41593-021-00903-8
  • Lapirot O, Chebbi R, Monconduit L, et al. NK1 receptor-expressing spinoparabrachial neurons trigger diffuse noxious inhibitory controls through lateral parabrachial activation in the male rat. Pain. 2009;142(3):245–254. doi:10.1016/j.pain.2009.01.015
  • Crawford LS, Mills EP, Hanson T, et al. Brainstem mechanisms of pain modulation: a within-subjects 7T fMRI study of placebo analgesic and nocebo hyperalgesic responses. J Neurosci. 2021;41(47):9794–9806. doi:10.1523/JNEUROSCI.0806-21.2021
  • Chen Q, Roeder Z, Li M-H, et al. Optogenetic evidence for a direct circuit linking nociceptive transmission through the parabrachial complex with pain-modulating neurons of the Rostral Ventromedial Medulla (RVM). ENeuro. 2017;4(3). doi:10.1523/ENEURO.0202-17.2017
  • Yu W, Pati D, Pina MM, et al. Periaqueductal gray/dorsal raphe dopamine neurons contribute to sex differences in pain-related behaviors. Neuron. 2021;109(8):1365–1380 e5. doi:10.1016/j.neuron.2021.03.001
  • Pertovaara A, Wei H. A dissociative change in the efficacy of supraspinal versus spinal morphine in the neuropathic rat. Pain. 2003;101(3):237–250. doi:10.1016/S0304-3959(02)00320-2
  • Yang Z-L, Gao Y-J, Wu G-C, Zhang Y-Q. The rostral ventromedial medulla mediates the facilitatory effect of microinjected orphanin FQ in the periaqueductal gray on spinal nociceptive transmission in rats. Neuropharmacology. 2003;45(5):612–622. doi:10.1016/S0028-3908(03)00234-X
  • Yang Z-L, Zhang Y-Q, Wu G-C. Effects of microinjection of OFQ into PAG on spinal dorsal horn WDR neurons in rats. Brain Res. 2001;888(1):167–171. doi:10.1016/S0006-8993(00)03100-0
  • Drake RAR, Leith JL, Almahasneh F, et al. Periaqueductal grey EP3 receptors facilitate spinal nociception in arthritic secondary hypersensitivity. J Neurosci. 2016;36(35):9026–9040. doi:10.1523/JNEUROSCI.4393-15.2016
  • Leith JL, Wilson AW, You H-J, et al. Periaqueductal grey cyclooxygenase-dependent facilitation of C-nociceptive drive and encoding in dorsal horn neurons in the rat. J Physiol. 2014;592(22):5093–5107. doi:10.1113/jphysiol.2014.275909
  • Bagley EE, Ingram SL. Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology. 2020;173:108131. doi:10.1016/j.neuropharm.2020.108131
  • Kohro Y, Matsuda T, Yoshihara K, et al. Spinal astrocytes in superficial laminae gate brainstem descending control of mechanosensory hypersensitivity. Nat Neurosci. 2020;23(11):1376–1387. doi:10.1038/s41593-020-00713-4
  • Hirschberg S, Li Y, Randall A, et al. Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. ELife. 2017;6. doi:10.7554/eLife.29808
  • Li J, Wei Y, Zhou J, et al. Activation of locus coeruleus-spinal cord noradrenergic neurons alleviates neuropathic pain in mice via reducing neuroinflammation from astrocytes and microglia in spinal dorsal horn. J Neuroinflammation. 2022;19(1):123. doi:10.1186/s12974-022-02489-9
  • Kucharczyk MW, Di Domenico F, Bannister K. Distinct brainstem to spinal cord noradrenergic pathways inversely regulate spinal neuronal activity. Brain. 2022;145(7):2293–2300. doi:10.1093/brain/awac085
  • Peng B, Jiao Y, Zhang Y, et al. Bulbospinal nociceptive ON and OFF cells related neural circuits and transmitters. Front Pharmacol. 2023;14:1159753. doi:10.3389/fphar.2023.1159753
  • Francois A, Low SA, Sypek EI, et al. A brainstem-spinal cord inhibitory circuit for mechanical pain modulation by GABA and enkephalins. Neuron. 2017;93(4):822–839 e6. doi:10.1016/j.neuron.2017.01.008
  • Nguyen E, Smith KM, Cramer N, et al. Medullary kappa-opioid receptor neurons inhibit pain and itch through a descending circuit. Brain. 2022;145(7):2586–2601. doi:10.1093/brain/awac189
  • Khasabov SG, Malecha P, Noack J, et al. Hyperalgesia and sensitization of dorsal horn neurons following activation of NK-1 receptors in the rostral ventromedial medulla. J Neurophysiol. 2017;118(5):2727–2744. doi:10.1152/jn.00478.2017
  • Chebbi R, Boyer N, Monconduit L, et al. The nucleus raphe magnus OFF-cells are involved in diffuse noxious inhibitory controls. Exp Neurol. 2014;256:39–45. doi:10.1016/j.expneurol.2014.03.006
  • Li N, Li C, Han R, et al. LPM580098, a novel triple reuptake inhibitor of serotonin, noradrenaline, and dopamine, attenuates neuropathic pain. Front Pharmacol. 2019;10:53. doi:10.3389/fphar.2019.00053
  • McGaraughty S, Chu KL, Cowart MD, Brioni JD. Antagonism of supraspinal histamine H3 receptors modulates spinal neuronal activity in neuropathic rats. J Pharmacol Exp Ther. 2012;343(1):13–20. doi:10.1124/jpet.112.194761
  • Ganley RP, de Sousa MM, Werder K, et al. Targeted anatomical and functional identification of antinociceptive and pronociceptive serotonergic neurons that project to the spinal dorsal horn. ELife. 2023;12. doi:10.7554/eLife.78689
  • Bannister K, Lee YS, Goncalves L, et al. Neuropathic plasticity in the opioid and non-opioid actions of dynorphin A fragments and their interactions with bradykinin B2 receptors on neuronal activity in the rat spinal cord. Neuropharmacology. 2014;85:375–383. doi:10.1016/j.neuropharm.2014.06.005
  • Sagalajev B, Viisanen H, Wei H, Pertovaara A. Descending antinociception induced by secondary somatosensory cortex stimulation in experimental neuropathy: role of the medullospinal serotonergic pathway. J Neurophysiol. 2017;117(3):1200–1214. doi:10.1152/jn.00836.2016
  • Patel R, Dickenson AH. Modality selective roles of pro-nociceptive spinal 5-HT and 5-HT receptors in normal and neuropathic states. Neuropharmacology. 2018;143:29–37. doi:10.1016/j.neuropharm.2018.09.028
  • Martins I, Tavares I. Reticular formation and pain: the past and the future. Front Neuroanat. 2017;11:51. doi:10.3389/fnana.2017.00051
  • Villanueva L. Diffuse Noxious Inhibitory Control (DNIC) as a tool for exploring dysfunction of endogenous pain modulatory systems. Pain. 2009;143(3):161–162. doi:10.1016/j.pain.2009.03.003
  • Dugast C, Almeida A, Lima D. The medullary dorsal reticular nucleus enhances the responsiveness of spinal nociceptive neurons to peripheral stimulation in the rat. Eur J Neurosci. 2003;18(3):580–588. doi:10.1046/j.1460-9568.2003.02782.x
  • Lima D, Almeida A. The medullary dorsal reticular nucleus as a pronociceptive centre of the pain control system. Prog Neurobiol. 2002;66(2):81–108. doi:10.1016/S0301-0082(01)00025-9
  • Patel R, Dickenson AH. A study of cortical and brainstem mechanisms of diffuse noxious inhibitory controls in anaesthetised normal and neuropathic rats. Eur J Neurosci. 2020;51(4):952–962. doi:10.1111/ejn.14576
  • Zhao Z-Q. Neural mechanism underlying acupuncture analgesia. Progr Neurobiol. 2008;85(4):355–375. doi:10.1016/j.pneurobio.2008.05.004
  • Yu L, Wang W, Li L, et al. Inhibition of electroacupuncture on nociceptive responses of dorsal horn neurons evoked by noxious colorectal distention in an intensity-dependent manner. J Pain Res. 2019;12:231–242. doi:10.2147/JPR.S182876
  • Gao X, Rong P, Li L, et al. An innovative high-tech acupuncture product: SXDZ-100 nerve muscle stimulator, its theoretical basis, design, and application. Evid Based Complement Alternat Med. 2012;2012:626395. doi:10.1155/2012/626395
  • Wang S, Wang J, Liu K, et al. Signaling interaction between facial and meningeal inputs of the trigeminal system mediates peripheral neurostimulation analgesia in a rat model of migraine. Neuroscience. 2020;433:184–199. doi:10.1016/j.neuroscience.2020.03.004
  • Duan-Mu CL, Zhang XN, Shi H, et al. Electroacupuncture-induced muscular inflammatory pain relief was associated with activation of low-threshold mechanoreceptor neurons and inhibition of wide dynamic range neurons in spinal dorsal horn. Front Neurosci. 2021;15:687173. doi:10.3389/fnins.2021.687173
  • Qu Z, Liu L, Yang Y, et al. Electro-acupuncture inhibits C-fiber-evoked WDR neuronal activity of the trigeminocervical complex: neurophysiological hypothesis of a complementary therapy for acute migraine modeled rats. Brain Res. 2020;1730:146670. doi:10.1016/j.brainres.2020.146670
  • Rong P-J, Li S, Ben H, et al. Peripheral and spinal mechanisms of acupoint sensitization phenomenon. Evid Based Complement Alternat Med. 2013;2013:742195. doi:10.1155/2013/742195
  • Hong S, Ding S, Wu F, et al. Strong manual acupuncture manipulation could better inhibit spike frequency of the dorsal horn neurons in rats with acute visceral nociception. Evid Based Complement Alternat Med. 2015;2015:675437. doi:10.1155/2015/675437
  • Patel R, Kucharczyk M, Montagut-Bordas C, Lockwood S, Dickenson AH. Neuropathy following spinal nerve injury shares features with the irritable nociceptor phenotype: a back-translational study of oxcarbazepine. Eur J Pain. 2019;23(1):183–197. doi:10.1002/ejp.1300
  • Warwick C, Salsovic J, Hachisuka J, et al. Cell type-specific calcium imaging of central sensitization in mouse dorsal horn. Nat Commun. 2022;13(1):5199. doi:10.1038/s41467-022-32608-2
  • Fernandes EC, Santos IC, Kokai E, et al. Low- and high-threshold primary afferent inputs to spinal lamina III antenna-type neurons. Pain. 2018;159(11):2214–2222. doi:10.1097/j.pain.0000000000001320
  • Russ DE, Cross RBP, Li L, et al. A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat Commun. 2021;12(1):5722. doi:10.1038/s41467-021-25125-1
  • Haring M, Zeisel A, Hochgerner H, et al. Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nat Neurosci. 2018;21(6):869–880. doi:10.1038/s41593-018-0141-1