59
Views
0
CrossRef citations to date
0
Altmetric
Pre-Clinical/Scientific

Analysis of Ionomic Profiles of Spinal Cords in a Rat Model with Bone Cancer Pain

, , , , , & show all
Pages 1531-1545 | Received 01 Nov 2023, Accepted 04 Apr 2024, Published online: 23 Apr 2024

References

  • Xu L, Wang S, Zhang L, Liu B, Zheng S, Yao M. Cobratoxin alleviates cancer-induced bone pain in rats via inhibiting CaMKII signaling pathway after acting on M4 muscarinic cholinergic receptors. ACS Chem Neurosci. 2022;13(9):1422–1432. doi:10.1021/acschemneuro.2c00048
  • Wang K, Donnelly CR, Jiang C, et al. STING suppresses bone cancer pain via immune and neuronal modulation. Nat Commun. 2021;12:4558. doi:10.1038/s41467-021-24867-2
  • Snijders RAH, Brom L, Theunissen M, van den Beuken-van Everdingen MHJ. Update on prevalence of pain in patients with cancer 2022: a systematic literature review and meta-analysis. Cancers. 2023;15:591. doi:10.3390/cancers15030591
  • Huang JL, Guo C. Advances on bone cancer pain and its models. Lett in Biotech. 2020;31(2):214–219. doi:10.3969/j.issn.1009-0002.2020.02.015
  • Liang Y, Liu Y, Hou B, et al. CREB-regulated transcription coactivator 1 enhances CREB-dependent gene expression in spinal cord to maintain the bone cancer pain in mice. Mol Pain. 2016;12:1–11. doi:10.1177/1744806916641679
  • Shenoy PA, Kuo A, Leparc G, et al. Transcriptomic characterisation of the optimised rat model of Walker 256 breast cancer cell-induced bone pain. Clin Exp Pharmacol Physiol. 2019;46:1201–1215. doi:10.1111/1440-1681.13165
  • Wang A, Guo D, Cheng H, Jiang H, Liu X, Yun Z. Transcriptome sequencing explores the mechanism of Baicalin on bone cancer pain. J Inflamm Res. 2021;14:5999–6010. doi:10.2147/jir.S336028
  • Hou X, Weng Y, Guo Q, et al. Transcriptomic analysis of long noncoding RNAs and mRNAs expression profiles in the spinal cord of bone cancer pain rats. Mol Brain. 2020;13(47):1–16. doi:10.1186/s13041-020-00589-2
  • Romero-Morelos P, Ruvalcaba-Paredes E, Garciadiego-Cázares D, et al. Neurophysiological mechanisms related to pain management in bone tumors. Curr Neuropharmacol. 2021;19(3):308–319. doi:10.2174/1570159x18666201111112748
  • Diaz-delCastillo M, Christiansen SH, Appel CK, Falk S, Woldbye DPD, Heegaard A-M. Neuropeptide Y is up-regulated and induces antinociception in cancer-induced bone pain. Neuroscience. 2018;384:111–119. doi:10.1016/j.neuroscience.2018.05.025
  • Zhao J, Yan Y, Zhen S, et al. LY294002 alleviates bone cancer pain by reducing mitochondrial dysfunction and the inflammatory response. Int J Mol Med. 2023;51(42):1–12. doi:10.3892/ijmm.2023.5245
  • Huang JL, Chen XL, Guo C, Wang YX. Contributions of spinal D-amino acid oxidase to bone cancer pain. Amino Acids. 2012;43(5):1905–1918. doi:10.1007/s00726-012-1390-z
  • Zhang JY, Gong N, Huang JL, Guo LC, Wang YX. Gelsemine, a principal alkaloid from Gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal α3 glycine receptors. Pain. 2013;154(11):2452–2462. doi:10.1016/j.pain.2013.07.027
  • Zheng XQ, Wu YH, Huang JF, Wu AM. Neurophysiological mechanisms of cancer-induced bone pain. J Adv Res. 2022;35:117–127. doi:10.1016/j.jare.2021.06.006
  • Tansley S, Gu N, Guzmán AU, et al. Microglia-mediated degradation of perineuronal nets promotes pain. Science. 2022;377(6601):80–86. doi:10.1126/science.abl6773
  • Barkai O, Rayi PR, Butterman R, Katz B, Lev S, Binshtok AM. Encoding of inflammatory hyperalgesia in mouse spinal cord. Pain. 2023;164(2):443–460. doi:10.1097/j.pain.0000000000002727
  • Falk S, Dickenson AH. Pain and nociception: mechanisms of cancer-induced bone pain. J Clin Oncol. 2014;32(16):1647–1654. doi:10.1200/JCO.2013.51.7219
  • Fleet JC, Replogle R, Salt DE. Systems genetics of mineral metabolism. J Nutr. 2011;141(3):520–525. doi:10.3945/jn.110.128736
  • Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072. doi:10.1016/j.cell.2012.03.042
  • Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–1261. doi:10.1126/science.abf0529
  • Zhao G, Liu SJ, Gan XY, et al. Analysis of whole blood and urine trace elements in children with autism spectrum disorders and autistic behaviors. Biol Trace Elem Res. 2023;201(2):627–635. doi:10.1007/s12011-022-03197-4
  • Zheng L, Zhu HZ, Wang BT, et al. Sodium selenate regulates the brain ionome in a transgenic mouse model of Alzheimer’s disease. Sci Rep. 2016;6:39290. doi:10.1038/srep39290
  • Dubey P, Thakur V, Chattopadhyay M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients. 2020;12(6):1864. doi:10.3390/nu12061864
  • Mert T, Gunes Y, Ozcengiz D, Gunay I. Magnesium modifies fentanyl-induced local antinociception and hyperalgesia. Naunyn-Schmied Arch Pharmacol. 2009;380(5):415–420. doi:10.1007/s00210-009-0447-3
  • Tomita S, Sekiguchi F, Naoe K, et al. Cav3.2-dependent hyperalgesia/allodynia following intrathecal and intraplantar zinc chelator administration in rodents. J Pharmacol Sci. 2023;152(2):86–89. doi:10.1016/j.jphs.2023.03.007
  • Li S, Zhou C, Zhu Y, et al. Ferrostatin-1 alleviates angiotensin II (Ang II)- induced inflammation and ferroptosis in astrocytes. Int Immunopharmacol. 2021;90:107179. doi:10.1016/j.intimp.2020.107179
  • Wang H, Huo X, Han C, et al. Ferroptosis is involved in the development of neuropathic pain and allodynia. Mol Cell Biochem. 2021;476(8):3149–3161. doi:10.1007/s11010-021-04138-w
  • Chen X, Zhang B, Liu T, et al. Liproxstatin-1 attenuates morphine tolerance through inhibiting spinal ferroptosis-like cell death. ACS Chem Neurosci. 2019;10(12):4824–4833. doi:10.1021/acschemneuro.9b00539
  • Filipiak M, Filipiak ZM. Application of ionomics and ecological stoichiometry in conservation biology: nutrient demand and supply in a changing environment. Biol Conserv. 2022;272:109622. doi:10.1016/j.biocon.2022.109622
  • Salt DE, Baxter I, Lahner B. Ionomics and the study of the plant ionome. Annu Rev Plant Biol. 2008;59:709–733. doi:10.1146/annurev.arplant.59.032607.092942
  • Lahner B, Gong J, Mahmoudian M, et al. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol. 2003;21(10):1215–1221. doi:10.1038/nbt865
  • Zhang Y, Huang B, Jin J, Xiao Y, Ying H. Recent advances in the application of ionomics in metabolic diseases. Front Nutr. 2023;9:1111933. doi:10.3389/fnut.2022.1111933
  • Silver MK, Arain AL, Shao J, et al. Distribution and predictors of 20 toxic and essential metals in the umbilical cord blood of Chinese newborns. Chemosphere. 2018;210:1167–1175. doi:10.1016/j.chemosphere.2018.07.124
  • Li Q, Hu C, Lin J, et al. Urinary ionomic analysis reveals new relationship between minerals and longevity in a Han Chinese population. J Trace Elem Med Biol. 2019;53:69–75. doi:10.1016/j.jtemb.2019.02.002
  • Ma L, Peng S, Wei J, et al. Spinal microglial β-endorphin signaling mediates IL-10 and exenatide-induced inhibition of synaptic plasticity in neuropathic pain. CNS Neurosci Ther. 2021;27(10):1157–1172. doi:10.1111/cns.13694
  • Gong N, Gao ZY, Wang YC, et al. A series of D-amino acid oxidase inhibitors specifically prevents and reverses formalin-induced tonic pain in rats. J Pharmacol Exp Ther. 2011;336(1):282–293. doi:10.1124/jpet.110.172353
  • Mao-Ying QL, Zhao J, Dong ZQ, et al. A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. Biochem Biophys Res Commun. 2006;345(4):1292–1298. doi:10.1016/j.bbrc.2006.04.186
  • Gu YJ, Qian HY, Zhou F, et al. Folic acid relieves bone cancer pain by downregulating P2X2/3 receptors in rats. Brain Res. 2023;1811:148405. doi:10.1016/j.brainres.2023.148405
  • Honore P, Luger NM, Sabino MA, et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med. 2000;6(5):521–528. doi:10.1038/74999
  • Wang Y, Xu C, Liu P, et al. LncRNA 51325 alleviates bone cancer induced hyperalgesia through inhibition of Pum2. J Pain Res. 2024;17:265–284. doi:10.2147/jpr.S446635
  • Ma L, Ju P, Wang W, et al. Microglial activation of GLP-1R signaling in neuropathic pain promotes gene expression adaption involved in inflammatory responses. Neural Plast. 2021;2021:9923537. doi:10.1155/2021/9923537
  • Guida F, De Gregorio D, Palazzo E, et al. Behavioral, biochemical and electrophysiological changes in spared nerve injury model of neuropathic pain. Int J Mol Sci. 2020;21(9):3396. doi:10.3390/ijms21093396
  • Gabay E, Tal M. Pain behavior and nerve electrophysiology in the CCI model of neuropathic pain. Pain. 2004;110(1–2):354–360. doi:10.1016/j.pain.2004.04.021
  • Asante CO, Wallace VC, Dickenson AH. Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level. Mol Pain. 2009;5:27. doi:10.1186/1744-8069-5-27
  • Takasu K, Ogawa K, Nakamura A, et al. Enhanced GABAergic synaptic transmission at VLPAG neurons and potent modulation by oxycodone in a bone cancer pain model. Br J Pharmacol. 2015;172(8):2148–2164. doi:10.1111/bph.13039
  • Zhu YF, Ungard R, Seidlitz E, et al. Differences in electrophysiological properties of functionally identified nociceptive sensory neurons in an animal model of cancer-induced bone pain. Mol Pain. 2016;12:1–14. doi:10.1177/1744806916628778
  • Ertilav K, Nazıroğlu M, Ataizi ZS, Yıldızhan K. Melatonin and selenium suppress docetaxel-induced TRPV1 activation, neuropathic pain and oxidative neurotoxicity in mice. Biol Trace Elem Res. 2021;199(4):1469–1487. doi:10.1007/s12011-020-02250-4
  • Yüksel E, Nazıroğlu M, Şahin M, Çiğ B. Involvement of TRPM2 and TRPV1 channels on hyperalgesia, apoptosis and oxidative stress in rat fibromyalgia model: protective role of selenium. Sci Rep. 2017;7(1):17543. doi:10.1038/s41598-017-17715-1
  • Shen Z, Lin J, Teng J, et al. Association of urinary ionomic profiles and acute kidney injury and mortality in patients after cardiac surgery. J Thorac Cardiovasc Surg. 2020;159(3):918–926.e5. doi:10.1016/j.jtcvs.2019.02.095
  • Bagher Pour O, Yahyavi Y, Karimi A, et al. Serum trace elements levels and clinical outcomes among Iranian COVID-19 patients. Int J Infect Dis. 2021;111:164–168. doi:10.1016/j.ijid.2021.08.053
  • Ozaki T, Matsuoka J, Tsubota M, et al. Zinc deficiency promotes cystitis-related bladder pain by enhancing function and expression of Cav3.2 in mice. Toxicology. 2018;393:102–112. doi:10.1016/j.tox.2017.11.012
  • Liu T, Walker JS, Tracey DJ. Zinc alleviates thermal hyperalgesia due to partial nerve injury. Neuroreport. 1999;10(3):645–649. doi:10.1097/00001756-199902250-00037
  • Ferraz CR, Carvalho TT, Fattori V, et al. Jararhagin, a snake venom metalloproteinase, induces mechanical hyperalgesia in mice with the neuroinflammatory contribution of spinal cord microglia and astrocytes. Int J Biol Macromol. 2021;179:610–619. doi:10.1016/j.ijbiomac.2021.02.178
  • Gomez R, Por ED, Berg KA, Clarke WP, Glucksman MJ, Jeske NA. Metallopeptidase inhibition potentiates bradykinin-induced hyperalgesia. Pain. 2011;152(7):1548–1554. doi:10.1016/j.pain.2011.02.044
  • Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015;14(4):277–285. doi:10.1016/j.autrev.2014.11.008
  • Nazıroğlu M, Öz A, Yıldızhan K. Selenium and neurological diseases: focus on peripheral pain and TRP channels. Curr Neuropharmacol. 2020;18(6):501–517. doi:10.2174/1570159x18666200106152631
  • Dohrn MF, Dumke C, Hornemann T, et al. Deoxy-sphingolipids, oxidative stress, and vitamin C correlate with qualitative and quantitative patterns of small fiber dysfunction and degeneration. Pain. 2022;163(9):1800–1811. doi:10.1097/j.pain.0000000000002580
  • So KM, Lee Y, Bok JD, Kim EB, Chung MI. Analysis of ionomic profiles of canine hairs exposed to lipopolysaccharide (LPS)-induced stress. Biol Trace Elem Res. 2016;172(2):364–371. doi:10.1007/s12011-015-0611-1
  • Khan N, Hashmi S, Siddiqui AJ, et al. Ionomic profiling of pericardial fluid in ischemic heart disease. RSC Adv. 2020;10(60):36439–36451. doi:10.1039/d0ra03977b
  • Lee YH, Bang ES, Lee JH, et al. Serum concentrations of trace elements zinc, copper, selenium, and manganese in critically ill patients. Biol Trace Elem Res. 2019;188(2):316–325. doi:10.1007/s12011-018-1429-4
  • Lee M, Cho S, Roh K, et al. Glutathione alleviated peripheral neuropathy in oxaliplatin-treated mice by removing aluminum from dorsal root ganglia. Am J Transl Res. 2017;9(3):926–939.
  • Guan X, Bai X, Zhou C, et al. Serum ceruloplasmin depletion is associated with magnetic resonance evidence of widespread accumulation of brain iron in Parkinson’s disease. J Magn Reson Imaging. 2021;54(4):1098–1106. doi:10.1002/jmri.27680
  • Wandt VK, Winkelbeiner N, Bornhorst J, et al. A matter of concern - Trace element dyshomeostasis and genomic stability in neurons. Redox Biol. 2021;41:101877. doi:10.1016/j.redox.2021.101877
  • Pasha Q, Malik SA, Iqbal J, Shah MH. Characterization and distribution of the selected metals in the scalp hair of cancer patients in comparison with normal donors. Biol Trace Elem Res. 2007;118(3):207–216. doi:10.1007/s12011-007-0035-7