27
Views
0
CrossRef citations to date
0
Altmetric
Integrative/Acupuncture

Understanding the Relationship Between Vascular Smooth Muscle Cell Function and the Efficacy of Acupuncture in Treating Cerebral Ischemic Stroke: A Preclinical Meta-Analysis and Systematic Review

ORCID Icon, , , , , , , & show all
Pages 1693-1707 | Received 27 Nov 2023, Accepted 01 May 2024, Published online: 12 May 2024

References

  • Guzik A, Bushnell C. Stroke epidemiology and risk factor management. Continuum. 2017;23(1):15–39.
  • GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the global burden of disease study 2016. Lancet. 2017;390(10100):1151–1210. doi:10.1016/S0140-6736(17)32152-9
  • Ma Q, Li R, Wang L, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990–2019: an analysis for the global burden of disease study 2019. Lancet Public Health. 2021;6(12):e897–e906. doi:10.1016/S2468-2667(21)00228-0
  • Tolonen H, Mähönen M, Asplund K, et al. Do trends in population levels of blood pressure and other cardiovascular risk factors explain trends in stroke event rates? Comparisons of 15 populations in 9 countries within the WHO MONICA stroke project. Stroke. 2002;33(10):2367–2375. doi:10.1161/01.STR.0000033131.27936.7F
  • Emberson J, Lees KR, Lyden P, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. 2014;384(9958):1929–1935. doi:10.1016/S0140-6736(14)60584-5
  • Strbian D, Michel P, Seiffge DJ, et al. Symptomatic intracranial hemorrhage after stroke thrombolysis: comparison of prediction scores. Stroke. 2014;45(3):752–758. doi:10.1161/STROKEAHA.113.003806
  • Wu S, Wu B, Liu M, et al.; China Stroke Study Collaboration. Stroke in China: advances and challenges in epidemiology, prevention, and management. Lancet Neurol. 2019;18(4):394–405. doi:10.1016/S1474-4422(18)30500-3
  • Peplow Philip V, Martinez B. Prevention and protection against cerebral ischemic injury using acupuncture. Neural Regen Res. 2016;11(4):559–560. doi:10.4103/1673-5374.180735
  • Jin L, Han C. Effects of acupuncture on clinical outcome and helper T cell distribution and abundance in patients with convalescent ischemic stroke. Am J Transl Res. 2021;13(7):8118–8125.
  • Moher D, Liberati A, Tetzlaff J, Altman DG; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(6):e1000097. doi:10.1371/journal.pmed1000097
  • Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14(1). doi:10.1186/1471-2288-14-43
  • Sun D, Du Y, Shi L. Effect of electroacupuncture on inositol triphosphate and diacylglycerol levels in cerebral arteries of cerebral ischemia rats. Zhen Ci Yan Jiu. 2008;33(6):392–396.
  • Zhang D, Lu Y, Su Z, Cai D. Effect of acupoint sticking of ”Hua yutie” on VEGF expression in rats of focal cerebral ischemia. Zhongguo Zhen Jiu. 2009;29(3):217–221.
  • Du Y, Shi L, Li J, Xiong J, Li B, Fan X. Angiogenesis and improved cerebral blood flow in the ischemic boundary area were detected after electroacupuncture treatment to rats with ischemic stroke. Neurol Res. 2011;33(1):101–107. doi:10.1179/016164110X12714125204317
  • Pan J, Zhang W, Yan J, et al. Effects of electroacupuncture of acupoints of pericardium meridian on serum VEGF content and cerebral VEGF expression in cerebral ischemia rats. Zhen Ci Yan Jiu. 2012;37(3):197–201.
  • Zhang YG, Xiong KR. Effects of electroacupuncture combined with compound Salviae Miltiorrhizae tablet on the expressions of brain derived neurotrophic factor and vascular endothelial growth factor in hippocampus CA1 of chronic cerebral ischemia rats. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2012;32(5):643–646.
  • Xu YL, Gao L, Shi L, Li J, Liu WH, Du YH. Effect of electroacupuncture intervention on expression of vascular PKC in the ischemic cerebral tissue in rats with cerebral infarction. Zhen Ci Yan Jiu. 2012;37(3):218–823.
  • Lu Y, Zhao H, Wang Y, Han B, Wang S. Effects of electroacupuncture intervention on neurological function, blood glucose and insulin levels in rats with focal cerebral ischemia. Zhen Ci Yan Jiu. 2013;38(6):435–440.
  • Lu Y, Zhao H, Wang Y, et al. Effect of electroacupuncture intervention on neurological function, cerebral blood flow and cerebral cytochrome P 450 2 C 11 mRNA expression in rats with focal cerebral ischemia. Zhen Ci Yan Jiu. 2014;39(5):345–350.
  • Lü Y, Du Y, Xu Y, et al. Effect of electroacupuncture at ”Shuigou” (GV 26) on immunoactivity and content of protein kinase c in the middle cerebral artery in acute cerebral infarction rats. Zhen Ci Yan Jiu. 2015;40(3):219–223.
  • Zheng HZ, Jiang W, Zhao XF, et al. Electroacupuncture induces acute changes in cerebral cortical miRNA profile, improves cerebral blood flow and alleviates neurological deficits in a rat model of stroke. Neural Regen Res. 2016;11(12):1940–1950. doi:10.4103/1673-5374.197135
  • Liu M, Miao H, Li H, Zhao J, Xiong K. Effect of electroacupuncture combined with polysaccharide of gastrodia elata Blume on expression of brain derived neurotrophic factor and vascular endothelial growth factor in the paraventricular nucleus of hypothalamus in cerebral ischemia rat. Zhen Ci Yan Jiu. 2016;41(2):119–123.
  • Yang LH, Du YH, Li J. Effect of electroacupuncture on expression of apelin-APJ system of cerebral vascular endothelial cell in rats with cerebral infarction. Zhen Ci Yan Jiu. 2017;42(1):9–13.
  • Zan XC, Tang W, Li SL, Gong L, Li MX. Electroacupuncture combined with rehabilitation training improves regional cerebral blood flow and reduces infarct volume by promoting expression of angiogenesis-related factors in acute cerebral ischemia rats. Zhen Ci Yan Jiu. 2019;44(8):547–553. doi:10.13702/j.1000-0607.180881
  • Xu YL, Xu XM, Yang ZF, Guo MJ, Jiang XJ. Effects of electroacupuncture ”Shuigou” on expression of soluble guanylate cyclase (sGC) and protein kinase G (PKG) in vascular smooth muscle of cerebral artery in rats with cerebral infarction. Zhen Ci Yan Jiu. 2020;45(10):789–792. doi:10.13702/j.1000-0607.200076
  • Li G, Li XX, Dong JJ, Wu Y, Han YS. Effect of electroacupuncture on neurovascular unit and Wnt/β-catenin signaling in rats with cerebral ischemia. Zhen Ci Yan Jiu. 2021;46(2):87–94. doi:10.13702/j.1000-0607.200819
  • Li M, Wang Y, Gao Y, Yao X, Lan W, Tang W. Effects of electroacupuncture on angiogenesis and cortical VEGF and BDNF expression in rats with focal cerebral ischemia. J Acupunct Tuina Sci. 2022;20(2):91–103. doi:10.1007/s11726-022-1300-1
  • Li J, He Y, Du YH, et al. Effect of electro-acupuncture on vasomotor symptoms in rats with acute cerebral infarction based on phosphatidylinositol system. Chin J Integr Med. 2022;28(2):145–152. doi:10.1007/s11655-021-3341-6
  • Li J, Zhang M, He Y, et al. Molecular mechanism of electroacupuncture regulating cerebral arterial contractile protein in rats with cerebral infarction based on MLCK pathway. Chin J Integr Med. 2023;29(1):61–68. doi:10.1007/s11655-022-3468-0
  • Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91. doi:10.1161/01.STR.20.1.84
  • Zausinger S, Hungerhuber E, Baethmann A, Reulen H, Schmid-Elsaesser R. Neurological impairment in rats after transient middle cerebral artery occlusion: a comparative study under various treatment paradigms. Brain Res. 2000;863(1–2):94–105. doi:10.1016/S0006-8993(00)02100-4
  • de la Torre JC, Fortin T, Park GA, et al. Chronic cerebrovascular insufficiency induces dementia-like deficits in aged rats. Brain Res. 1992;582(2):186–195. doi:10.1016/0006-8993(92)90132-S
  • Chen ST, Hsu CY, Hogan EL, Maricq H, Balentine JD. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke. 1986;17(4):738–743. doi:10.1161/01.STR.17.4.738
  • Xiao ZY, Wang J, Balentine JD. Establishment of cerebral infarction model in SD rats with middle cerebral artery occlusion by craniotomy and electrocoagulation. Guangdong Med J. 2019;40(08):1074–1077.
  • Germanò AF, Dixon CE, d’Avella D, Hayes RL, Tomasello F. Behavioral deficits following experimental subarachnoid hemorrhage in the rat. J Neurotrauma. 1994;11(3):345–353. doi:10.1089/neu.1994.11.345
  • Shohami E, Novikov M, Bass R. Long-term effect of HU-211, a novel non-competitive NMDA antagonist, on motor and memory functions after closed head injury in the rat. Brain Res. 1995;674(1):55–62. doi:10.1016/0006-8993(94)01433-I
  • Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E. An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. J Neurotrauma. 1996;13(10):557–568. doi:10.1089/neu.1996.13.557
  • Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32(4):1005–1011. doi:10.1161/01.STR.32.4.1005
  • Chen J, Sanberg PR, Li Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–2688. doi:10.1161/hs1101.098367
  • Webb RC. Smooth muscle contraction and relaxation. Adv Physiol Educ. 2003;27(4):201–206. doi:10.1152/advan.00025.2003
  • Rembold CM. Regulation of contraction and relaxation in arterial smooth-muscle. Hypertension. 1992;20(2):129–137. doi:10.1161/01.HYP.20.2.129
  • Jover-Mengual T, Castelló-Ruiz M, Burguete MC, et al. Molecular mechanisms mediating the neuroprotective role of the selective estrogen receptor modulator, bazedoxifene, in acute ischemic stroke: a comparative study with 17β-estradiol. J Steroid Biochem Mol Biol. 2017;171:296–304. doi:10.1016/j.jsbmb.2017.05.001
  • Xu W, Zhu Q, Liu S, et al. Calretinin participates in regulating steroidogenesis by PLC-Ca (2+)-PKC pathway in Leydig cells. Sci Rep. 2018;8(1):7403. doi:10.1038/s41598-018-25427-3
  • Aslam N, Alvi F. Protein kinase C life cycle: explained through systems biology approach. Front Physiol. 2022;13:818688. doi:10.3389/fphys.2022.818688
  • Gangopadhyay SS, Takizawa N, Gallant C, et al. Smooth muscle archvillin: a novel regulator of signaling and contractility in vascular smooth muscle. J Cell Sci. 2004;117(21):5043–5057. doi:10.1242/jcs.01378
  • Kleinz MJ, Davenport AP. Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Peptides. 2004;118(3):119–125. doi:10.1016/j.regpep.2003.11.002
  • Folino A, Montarolo PG, Samaja M, Rastaldo R. Effects of apelin on the cardiovascular system. Heart Fail Rev. 2015;20(4):505–518. doi:10.1007/s10741-015-9475-x
  • Mughal A, Sun C, O’Rourke ST. Apelin reduces nitric oxide-induced relaxation of cerebral arteries by inhibiting activation of large-conductance, calcium-activated k channels. J Cardiovasc Pharmacol. 2018;71(4):223–232. doi:10.1097/FJC.0000000000000563
  • Li PL, Zhang DX, Ge ZD, Campbell WB. Role of ADP-ribose in 11,12-EET-induced activation of KCa channels in coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol. 2002;282(4):H1229–H1236. doi:10.1152/ajpheart.00736.2001
  • Gebremedhin D, Gopalakrishnan S, Harder David R. Endogenous events modulating myogenic regulation of cerebrovascular function. Curr Vasc Pharmacol. 2014;12(6):810–817. doi:10.2174/15701611113116660153
  • Cole WC, Welsh DG. Role of myosin light chain kinase and myosin light chain phosphatase in the resistance arterial myogenic response to intravascular pressure. Arch Biochem Biophys. 2011;510(2):160–173. doi:10.1016/j.abb.2011.02.024
  • Somlyo AP, Somlyo AV. Ca 2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003;83(4):1325–1358. doi:10.1152/physrev.00023.2003
  • Eto M, Kitazawa T, Yazawa M, Mukai H, Ono Y, Brautigan D. Histamine-induced vasoconstriction involves phosphorylation of a specific inhibitor protein for myosin phosphatase by protein kinase C α and δ isoforms. J Biol Chem. 2001;276(31):29072–29078. doi:10.1074/jbc.M103206200
  • Montfort WR, Wales JA, Weichsel A. Structure and activation of soluble guanylyl cyclase, the nitric oxide sensor. Antioxid Redox Signal. 2017;26(3):107–121. doi:10.1089/ars.2016.6693
  • Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62(3):525–563. doi:10.1124/pr.110.002907
  • Dupont LL, Glynos C, Bracke KR, Brouckaert P, Brusselle GG. Role of the nitric oxide-soluble guanylyl cyclase pathway in obstructive airway diseases. Pulm Pharmacol Ther. 2014;29(1):1–6. doi:10.1016/j.pupt.2014.07.004
  • Wooldridge AA, MacDonald JA, Erdodi F, et al. Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J Biol Chem. 2004;279(33):34496–34504. doi:10.1074/jbc.M405957200
  • Lincoln TM. Myosin phosphatase regulatory pathways: different functions or redundant functions? Circ Res. 2007;100(1):10–12. doi:10.1161/01.RES.0000255894.25293.82
  • Highsmith RF, Pang DC, Rapoport RM. Endothelial cell-derived vasoconstrictors: mechanisms of action in vascular smooth muscle. J Cardiovasc Pharmacol. 1989;13(Suppl 13):S36–S45. doi:10.1097/00005344-198900135-00010
  • Jiang YZ, Manduchi E, Jimenez JM, Davies PF. Endothelial epigenetics in biomechanical stress: disturbed flow-mediated epigenomic plasticity in vivo and in vitro. Arterioscler Thromb Vasc Biol. 2015;35(6):1317–1326. doi:10.1161/ATVBAHA.115.303427
  • Chen J, Dai M, Wang Y. Paeonol inhibits proliferation of vascular smooth muscle cells stimulated by high glucose via Ras-RafERK1/2 signaling pathway in coculture model. Evid Based Complement Alternat Med. 2014;2014:484269. doi:10.1155/2014/484269
  • Thum T, Mayr M. Review focus on the role of microRNA in cardiovascular biology and disease. Cardiovasc Res. 2012;93(4):543–544. doi:10.1093/cvr/cvs085
  • Wang M, Li W, Chang GQ, et al. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler Thromb Vasc Biol. 2011;31(9):2044–2053. doi:10.1161/ATVBAHA.111.229559
  • Leeper NJ, Maegdefessel L. Non-coding RNAs: key regulators of smooth muscle cell fate in vascular disease. Cardiovasc Res. 2018;114(4):611–621. doi:10.1093/cvr/cvx249
  • Yang F, Chen Q, He S, et al. miR-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation. Circulation. 2018;137(17):1824–1841. doi:10.1161/CIRCULATIONAHA.117.027799
  • Horita HN, Simpson PA, Ostriker A, et al. Serum response factor regulates expression of phosphatase and tensin homolog through a microRNA network in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2011;31(12):2909–2919. doi:10.1161/ATVBAHA.111.233585
  • Huang H, Xie C, Sun X, Ritchie RP, Zhang J, Chen YE. miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. J Biol Chem. 2010;285(13):9383–9389. doi:10.1074/jbc.M109.095612
  • Finklestein SP, Kemmou A, Caday CG, Berlove DJ. Basic fibroblast growth factor protects cerebrocortical neurons against excitatory amino acid toxicity in vitro. Stroke. 1993;24(1):141–143. doi:10.1161/01.str.24.1.141
  • Cuevas P, Carceller F, Ortega S, Zazo M, Nieto I, Giménez-Gallego G. Hypotensive activity of fibroblast growth factor. Science. 1991;254(5035):1209. doi:10.1126/science.1957172
  • King GL, Johnson SM. Receptor-mediated transport of insulin across endothelial cells. Science. 1985;227(4694):1583–1586. doi:10.1126/science.3883490
  • Hachiya HL, Halban PA, King GL. Intracellular pathways of insulin transport across vascular endothelial cells. Am J Physiol. 1988;255(4 Pt 1):C459–C464. doi:10.1152/ajpcell.1988.255.4.C459
  • Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2012;32(9):2052–2059. doi:10.1161/ATVBAHA.111.241919
  • Nusse R, Clevers H. Wnt/beta‐catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985‐999. doi:10.1016/j.cell.2017.05.016
  • Vervloet M, Cozzolino M. Vascular calcification in chronic kidney disease: different bricks in the wall? Kidney Int. 2017;91(4):808‐817. doi:10.1016/j.kint.2016.09.024
  • Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT signaling in cardiac and vascular disease. Pharmacol Rev. 2018;70(1):68–141. doi:10.1124/pr.117.013896
  • Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989;161(2):851–858. doi:10.1016/0006-291X(89)92678-8
  • Grosskreutz CL, Anand-Apte B, Dupláa C, et al. Vascular endothelial growth factor-induced migration of vascular smooth muscle cells in vitro. Microvasc Res. 1999;58(2):128–136. doi:10.1006/mvre.1999.2171
  • Autiero M, Luttun A, Tjwa M, Carmeliet P. Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost. 2003;1(7):1356–1370. doi:10.1046/j.1538-7836.2003.00263.x
  • Takahashi T, Yamaguchi S, Chida K, Shibuya M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. EMBO. 2001;20(11):2768–2778. doi:10.1093/emboj/20.11.2768
  • Rottbauer W, Just S, Wessels G, et al. VEGF-PLCγ1 pathway controls cardiac contractility in the embryonic heart. Genes Dev. 2005;19(13):1624–1634. doi:10.1101/gad.1319405
  • Cross Michael J, Dixelius J, Matsumoto T, Claesson-Welsh L. VEGF-receptor signal transduction. Trends Biochem Sci. 2003;28(9):488–494. doi:10.1016/S0968-0004(03)00193-2
  • Teresa C, Gill R, Thirouin Zahra S, et al. Cross-talk between GABAergic postsynapse and microglia regulate synapse loss after brain ischemia. Sci Adv. 2022;8(9):eabj0112. doi:10.1126/sciadv.abj0112
  • Guan J, Tong W, Ding W, et al. Neuronal regeneration and protection by collagen-binding BDNF in the rat middle cerebral artery occlusion model. Biomaterials. 2012;33(5):1386–1395. doi:10.1016/j.biomaterials.2011.10.073
  • Yu SJ, Tseng KY, Shen H, Harvey BK, Airavaara M, Wang Y. Local administration of AAV-BDNF to subventricular zone induces functional recovery in stroke rats. PLoS One. 2013;8(12):e81750. doi:10.1371/journal.pone.0081750
  • Lin D, De La Pena I, Lin L, Zhou SF, Borlongan Cesar V, Cao C. The neuroprotective role of acupuncture and activation of the BDNF signaling pathway. Int J Mol Sci. 2014;15(2):3234–3252. doi:10.3390/ijms15023234
  • Xiong J, Wang Z, Bai J, Cheng K, Liu Q, Ni J. Calcitonin gene-related peptide: a potential protective agent in cerebral ischemia-reperfusion injury. Front Neurosci. 2023;17:1184766. doi:10.3389/fnins.2023.1184766
  • Li F, Xu D, Hou K, Gou X, Li Y. The role of P2Y12 receptor inhibition in ischemic stroke on microglia, platelets and vascular smooth muscle cells. J Thromb Thrombolysis. 2020;50(4):874–885. doi:10.1007/s11239-020-02098-4
  • van Dam-Nolen Dianne HK, van Egmond Nina CM, Koudstaal Peter J, van der Lugt A, Bos D. Sex differences in carotid atherosclerosis: a systematic review and meta-analysis. Stroke. 2023;54(2):315–326. doi:10.1161/STROKEAHA.122.041046
  • Kimura K, Ito M, Amano M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273(5272):245–248. doi:10.1126/science.273.5272.245
  • Hedges JC, Oxhorn BC, Carty M, Adam LP, Yamboliev IA, Gerthoffer WT. Phosphorylation of caldesmon by ERK MAP kinases in smooth muscle. Am J Physiol Cell Physiol. 2000;278(4):C718–C726. doi:10.1152/ajpcell.2000.278.4.C718
  • Yamboliev IA, Hedges JC, Mutnick JL, Adam LP, Gerthoffer WT. Evidence for modulation of smooth muscle force by the p38 MAP kinase/HSP27 pathway. Am J Physiol Heart Circ Physiol. 2000;278(6):H1899–907. doi:10.1152/ajpheart.2000.278.6.H1899