210
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Temperature Change of Ophthalmic Viscosurgical Devices in a Bi-Chamber Set-Up at a Flow of 0 and 20mL/min

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 555-560 | Received 08 Sep 2022, Accepted 10 Jan 2023, Published online: 10 Feb 2023

References

  • Mansour HA, Mansour AM. Autologous tenon plug and patch in phacoburn. BMJ Case Rep. 2021;14(1):e238970. doi:10.1136/bcr-2020-238970
  • Khodabakhsh AJ, Zaidman G, Tabin G. Corneal surgery for severe phacoemulsification burns. Ophthalmology. 2004;111(2):332–334. doi:10.1016/j.ophtha.2003.06.004
  • Majid MA, Sharma MK, Harding SP. Corneoscleral burn during phacoemulsification surgery. J Cataract Refract Surg. 1998;24(10):1413–1415. doi:10.1016/S0886-3350(98)80239-3
  • Sugar A, Schertzer RM. Clinical course of phacoemulsification wound burns. J Cataract Refract Surg. 1999;25(5):688–692. doi:10.1016/S0886-3350(99)00021-8
  • Suzuki H, Igarashi T, Shiwa T, Takahashi H. Efficacy of ophthalmic viscosurgical devices in preventing temperature rise at the corneal endothelium during phacoemulsification. Curr Eye Res. 2016;41(12):1548–1552. doi:10.3109/02713683.2015.1136420
  • Floyd M, Valentine J, Coombs J, Olson RJ. Effect of incisional friction and ophthalmic viscosurgical devices on the heat generation of ultrasound during cataract surgery. J Cataract Refract Surg. 2006;32(7):1222–1226. doi:10.1016/j.jcrs.2006.01.107
  • Yildirim TM, Auffarth GU, Son HS, Khoramnia R, Munro DJ, Merz PR. Dispersive viscosurgical devices demonstrate greater efficacy in protecting corneal endothelium in vitro. BMJ Open Ophthalmol. 2019;4(1):e000227. doi:10.1136/bmjophth-2018-000227
  • Jurowski P, Gos R, Kusmierczyk J, Owczarek G, Gralewicz G. Quantitative thermographic analysis of viscoelastic substances in an experimental study in rabbits. J Cataract Refract Surg. 2006;32(1):137–140. doi:10.1016/j.jcrs.2005.11.025
  • Meyer JJ, Kuo A, Olson RJ. The risk of capsular breakage from phacoemulsification needle contact with the lens capsule: a laboratory study. Am J Ophthalmol. 2010;149(6):882–886.e1. doi:10.1016/j.ajo.2009.12.035
  • Buschschlüter S, Koch C, von Eicken J, Höh H. Computation of the temperature rise at the corneal endothelium during cataract surgery by modeling of heat generation inside the anterior chamber. Ultrasound Med Biol. 2014;40(10):2431–2444. doi:10.1016/j.ultrasmedbio.2014.05.017
  • Zacharias J. Laboratory assessment of thermal characteristics of three phacoemulsification tip designs operated using torsional ultrasound. Clin Ophthalmol. 2016;10:1095–1101. doi:10.2147/OPTH.S105065
  • Sippel KC, Pineda R. Phacoemulsification and thermal wound injury. Semin Ophthalmol. 2002;17(3–4):102–109. doi:10.1076/soph.17.3.102.14776
  • Nair S, Nair RU. Wound and surface temperatures in vivo in torsional and longitudinal modalities of ultrasound in coaxial microincisional cataract surgery. Clin Ophthalmol. 2017;11:249–255. doi:10.2147/OPTH.S123222
  • Modi SS, Davison JA, Walters T. Safety, efficacy, and intraoperative characteristics of DisCoVisc and Healon ophthalmic viscosurgical devices for cataract surgery. Clin Ophthalmol. 2011;5:1381–1389. doi:10.2147/OPTH.S22243
  • Bissen-Miyajima H. In vitro behavior of ophthalmic viscosurgical devices during phacoemulsification. J Cataract Refract Surg. 2006;32(6):1026–1031. doi:10.1016/j.jcrs.2006.02.039
  • Yamagami S, Yamagami H. Direct measurement of wound temperature during phacoemulsification. Ophthalmologica. 1998;212(1):50–52. doi:10.1159/000027260