205
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Spotlight on Lattice Degeneration Imaging Techniques

ORCID Icon, , , &
Pages 2383-2395 | Received 31 May 2023, Accepted 10 Aug 2023, Published online: 16 Aug 2023

References

  • Byer NE. Lattice degeneration of the retina. Surv Ophthalmol. 1979;23:213–248. doi:10.1016/0039-6257(79)90048-1
  • Cheung R, Ly A, Katalinic P, et al. Visualisation of peripheral retinal degenerations and anomalies with ocular imaging. Semin Ophthalmol. 2022;37:554–582. doi:10.1080/08820538.2022.2039222
  • Haimann MH, Burton TC, Brown CK. Epidemiology of retinal detachment. Arch Ophthalmol. 1982;100:289–292. doi:10.1001/archopht.1982.01030030291012
  • Laatikainen L, Tolppanen EM, Harju H. Epidemiology of rhegmatogenous retinal detachment in a Finnish population. Acta Ophthalmol. 1985;63:59–64. doi:10.1111/j.1755-3768.1985.tb05216.x
  • El-Abiary M, Shams F, Goudie C, Yorston D. The Scottish RD survey 10 years on: the increasing incidence of retinal detachments. Eye. 2023;37:1320–1324. doi:10.1038/s41433-022-02123-1
  • Ripandelli G, Coppé AM, Parisi V, et al. Posterior vitreous detachment and retinal detachment after cataract surgery. Ophthalmology. 2007;114:692–697. doi:10.1016/j.ophtha.2006.08.045
  • Straatsma BR, Zeegen PD, Foos RY, Feman SS, Shabo AL. Lattice degeneration of the retina. XXX Edward Jackson Memorial Lecture. Am J Ophthalmol. 1974;77(5):619–649. doi:10.1016/0002-9394(74)90525-x
  • Quinn N, Csincsik L, Flynn E, et al. The clinical relevance of visualising the peripheral retina. Prog Retin Eye Res. 2019;68:83–109. doi:10.1016/j.preteyeres.2018.10.001
  • Liu L, Wang F, Xu D, Xie C, Zou J. The application of wide-field laser ophthalmoscopy in fundus examination before myopic refractive surgery. BMC Ophthalmol. 2017;17:250. doi:10.1186/s12886-017-0647-4
  • Yang D, Li M, Wei R, Xu Y, Shang J, Zhou X. Optomap ultrawide field imaging for detecting peripheral retinal lesions in 1725 high myopic eyes before implantable collamer lens surgery. Clin Exp Ophthalmol. 2020;48:895–902. doi:10.1111/ceo.13809
  • Kumar J, Kohli P, Babu N, Krishnakumar K, Arthur D, Ramasamy K. Comparison of two ultra-widefield imaging for detecting peripheral retinal breaks requiring treatment. Graefes Arch Clin Exp Ophthalmol. 2021;259:1427–1434. doi:10.1007/s00417-020-04938-8
  • Wang T, Liao G, Chen L, et al. Intelligent diagnosis of multiple peripheral retinal lesions in ultra-widefield fundus images based on Deep Learning. Ophthalmol Ther. 2023;12:1081–1095. doi:10.1007/s40123-023-00651-x
  • Tang YW, Ji J, Lin JW, et al. Automatic detection of peripheral retinal lesions from ultrawide-field fundus images using Deep Learning. Asia Pac J Ophthalmol. 2023. doi:10.1097/APO.0000000000000599
  • Zhang C, He F, Li B, et al. Development of a deep-learning system for detection of lattice degeneration, retinal breaks, and retinal detachment in tessellated eyes using ultra-wide-field fundus images: a pilot study. Graefes Arch Clin Exp Ophthalmol. 2021;259:2225–2234. doi:10.1007/s00417-021-05105-3
  • Li Z, Guo C, Nie D, et al. A deep learning system for identifying lattice degeneration and retinal breaks using ultra-widefield fundus images. Ann Transl Med. 2019;7:618. doi:10.21037/atm.2019.11.28
  • Fujikawa A, Suzuma K, Yamada K, Inoue D, Kitaoka T. Optical coherence tomography and ultra-wide-field autofluorescence imaging are the useful tools to understand the changes in peripheral retinal lesions. Invest Ophthalmol Vis Sci. 2013;54:3596.
  • Ideyama M, Muraoka Y, Kawai K, et al. Pigmentary lesions in eyes with rhegmatogenous retinal detachment with flap tears: a retrospective observational study. Sci Rep. 2022;12:12470. doi:10.1038/s41598-022-16508-5
  • Tolentino FI, Lapus JV, Novalis G, et al. Fluorescein angiography of degenerative lesions of the peripheral fundus and rhegmatogenous retinal detachment. Int Ophthalmol Clin. 1976;16:13–29. doi:10.1097/00004397-197601610-00005
  • Sato K. Shunt formation in lattice degeneration and retinal detachment. A fluorescein angiographic study. Mod Probl Ophthalmol. 1972;10:133–134.
  • Sato K, Tsunakawa N, Yanagisawa Y. Fluorescein angiography on retinal detachment and lattice degeneration. II. Lattice degeneration with retinal detachment. Nippon Ganka Gakkai Zasshi. 1971;75:1873–1883.
  • Sato K, Tsunakawa N, Inaba K, Yanagisawa Y. Fluorescein angiography on retinal detachment and lattice degeneration. I. Equatorial degeneration with idiopathic retinal detachment. Nippon Ganka Gakkai Zasshi. 1971;75:635–642.
  • Yura T. The relationship between the types of axial elongation and the prevalence of lattice degeneration of the retina. Acta Ophthalmol. 1998;76(1):90–95. doi:10.1034/j.1600-0420.1998.760117.x
  • Chu RL, Pannullo NA, Adam CR, Rafieetary MR, Sigler EJ. Morphology of peripheral vitreoretinal interface abnormalities imaged with spectral domain optical coherence tomography. J Ophthalmology. 2019;2019:1–5. doi:10.1155/2019/3839168
  • Manjunath V, Taha M, Fujimoto JG, Duker JS. Posterior lattice degeneration characterized by spectral domain optical coherence tomography. Retina. 2011;31(3):492–496. doi:10.1097/IAE.0b013e3181ed8dc9
  • Maltsev D, Kulikov A, Burnasheva M. Lattice degeneration imaging with optical coherence tomography angiography. J Curr Ophthalmol. 2022;34:379. doi:10.4103/joco.joco_94_22
  • Shaimova VA, ed. Peripheral Retinal Degenerations: Optical Coherence Tomography and Retinal Laser Coagulation.Springer International Publishing; 2017. doi:10.1007/978-3-319-48995-7
  • Kurobe R, Hirano Y, Ogura S, Yasukawa T, Ogura Y. Ultra-Widefield swept-source optical coherence tomography findings of peripheral retinal degenerations and breaks. Clin Opthalm. 2021;15:4739–4745. doi:10.2147/OPTH.S350080
  • Tsai CY, Hung KC, Wang SW, Chen MS, Ho TC. Spectral-domain optical coherence tomography of peripheral lattice degeneration of myopic eyes before and after laser photocoagulation. J Formos Med Assoc. 2019;118:679–685. doi:10.1016/j.jfma.2018.08.005
  • Kothari A, Narendran V, Saravanan VR. In vivo sectional imaging of the retinal periphery using conventional optical coherence tomography systems. Indian J Ophthalmol. 2012;60:235–239. doi:10.4103/0301-4738.95885
  • Shaimova VA, Pozdeeva OG, Shaimov TB, et al. Optical coherent tomography in diagnosis of peripheral retinal breaks. Vestn Oftalmol. 2013;129(6):51–56.
  • Pozdeyeva OG, Shaimov TB, Galin A, et al. Optical coherence tomography in diagnosis of peripheral retinal degenerations. Ophthalmol Russia. 2013;10(4):32–40.
  • Burnasheva MA, Maltsev DS, Kulikov AN. Retinal and choroidal circulation in patients with lattice retinal degeneration: optical coherence tomography-angiography study. Ophthalmol Rep. 2022;15:39–45. doi:10.17816/OV110752
  • Garcia-Aguirre G, Henaine-Berra A, Salcedo-Villanueva G. Visualization and grading of vitreous floaters using dynamic ultra-widefield infrared confocal scanning laser ophthalmoscopy: a pilot study. JCM. 2022;11(5502). doi:10.3390/jcm11195502
  • Maltsev DS, Kulikov AN, Burnasheva MA, Chhablani J. Retro-mode scanning laser ophthalmoscopy in evaluation of peripheral retinal lesions. Graefes Arch Clin Exp Ophthalmol. 2021;259:301–306. doi:10.1007/s00417-020-04872-9
  • Kulikov AN, Maltsev DS, Burnasheva MA, Chhablani J. Characterization of choroidal nevi with dark-field infrared scanning laser ophthalmoscopy. Ophthalmol Retina. 2019;3:703–708. doi:10.1016/j.oret.2019.03.011
  • Kulikov AN, Maltsev DS, Burnasheva MA, Chhablani J. Dark-Field scanning laser ophthalmoscopy for prediction of central serous chorioretinopathy responsiveness to laser therapy. J Curr Ophthalmol. 2021;33:461–467. doi:10.4103/joco.joco_257_21
  • Pierro L, Camesasca FI, Mischi M, Brancato R. Peripheral retinal changes and axial myopia. Retina. 1992;12(1):12–17. doi:10.1097/00006982-199212010-00003
  • Celorio JM, Pruett RC. Prevalence of lattice degeneration and its relation to axial length in severe myopia. Am J Ophthalmol. 1991;111:20–23. doi:10.1016/s0002-9394(14)76891-6
  • Chen DZ, Koh V, Tan M, et al. Peripheral retinal changes in highly myopic young Asian eyes. Acta Ophthalmol. 2018;96:e846–e851. doi:10.1111/aos.13752
  • Heitmar R, Safeen S. Regional differences in oxygen saturation in retinal arterioles and venules. Graefes Arch Clin Exp Ophthalmol. 2012;250:1429–1434. doi:10.1007/s00417-012-1980-1
  • Zhang Q, Lee CS, Chao J, et al. Wide-field optical coherence tomography based microangiography for retinal imaging. Sci Rep. 2016;6:22017. doi:10.1038/srep22017
  • Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017;7:42201. doi:10.1038/srep42201
  • Davidova P, Müller M, Wenner Y, et al. Ophthalmic artery occlusion after glabellar hyaluronic acid filler injection. Am J Ophthalmol Case Rep. 2022;26:101407. doi:10.1016/j.ajoc.2022.101407
  • Hayreh SS, Baines JA. Occlusion of the posterior ciliary artery. II. Chorio-retinal lesions. Br J Ophthalmol. 1972;56(10):736–753. doi:10.1136/bjo.56.10.736
  • Keidel LF, Schworm B, Langer J, et al. Scleral thickness as a risk factor for central serous chorioretinopathy and pachychoroid neovasculopathy. J Clin Med. 2023;12(3102). doi:10.3390/jcm12093102
  • Nash BM, Watson CJG, Hughes E, et al. Heterozygous COL9A3 variants cause severe peripheral vitreoretinal degeneration and retinal detachment. Eur J Hum Genet. 2021;29:881–886. doi:10.1038/s41431-021-00820-1
  • Okazaki S, Meguro A, Ideta R, et al. Common variants in the COL2A1 gene are associated with lattice degeneration of the retina in a Japanese population. Mol Vis. 2019;25:843–850.