140
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Assessment of a Novel Semi-Automated Algorithm for the Quantification of the Parafoveal Capillary Network

ORCID Icon, & ORCID Icon
Pages 1661-1674 | Received 12 Feb 2023, Accepted 01 May 2023, Published online: 08 Jun 2023

References

  • Wang Q, Kocaoglu OP, Cense B, et al. Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics. Invest Ophthalmol Vis Sci. 2011;52(9):6292–6299. doi:10.1167/iovs.10-6424
  • Takahashi K, Kishi S, Muraoka K, Shimizu K. Reperfusion of occluded capillary beds in diabetic retinopathy. Am J Ophthalmol. 1998;126(6):791–797. doi:10.1016/s0002-9394(98)00242-6
  • Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina. 2015;35(11):2377–2383. doi:10.1097/IAE.0000000000000849
  • Tan CS, Lim LW, Chow VS, et al. Optical Coherence Tomography Angiography Evaluation of the Parafoveal Vasculature and Its Relationship With Ocular Factors. Invest Ophthalmol Vis Sci. 2016;57(9):OCT224–34. doi:10.1167/iovs.15-18869
  • Haddouche A, Adel M, Rasigni M, Conrath J, Bourennane S. Detection of the foveal avascular zone on retinal angiograms using Markov random fields. Digit Signal Process. 2010;20(1):149–154. doi:10.1016/j.dsp.2009.06.005
  • Bresnick GH, Condit R, Syrjala S, Palta M, Groo A, Korth K. Abnormalities of the foveal avascular zone in diabetic retinopathy. Arch Ophthalmol. 1984;102(9):1286–1293. doi:10.1001/archopht.1984.01040031036019
  • Remky A, Wolf S, Knabben H, Arend O, Reim M. Perifoveal capillary network in patients with acute central retinal vein occlusion. Ophthalmology. 1997;104(1):33–37. doi:10.1016/s0161-6420(97)30365-0
  • Koulisis N, Kim AY, Chu Z, et al. Quantitative microvascular analysis of retinal venous occlusions by spectral domain optical coherence tomography angiography. PLoS One. 2017;12(4):e0176404. doi:10.1371/journal.pone.0176404
  • Kapsala Z, Pallikaris A, Mamoulakis D, Moschandreas J, Bontzos G, Tsilimbaris M. Perifoveal capillary network quantification in young diabetic patients with subclinical or no retinopathy. Can J Ophthalmol. 2018;53(3):199–206. doi:10.1016/j.jcjo.2017.09.029
  • Tam J, Martin JA, Roorda A. Noninvasive visualization and analysis of parafoveal capillaries in humans. Invest Ophthalmol Vis Sci. 2010;51(3):1691–1698. doi:10.1167/iovs.09-4483
  • Popovic Z, Knutsson P, Thaung J, Owner-Petersen M, Sjöstrand J. Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics. Invest Ophthalmol Vis Sci. 2011;52(5):2649–2655. doi:10.1167/iovs.10-6054
  • Conrath J, Giorgi R, Raccah D, Ridings B. Foveal avascular zone in diabetic retinopathy: quantitative vs qualitative assessment. Eye. 2005;19(3):322–326. doi:10.1038/sj.eye.6701456
  • Schottenhamml J, Moult EM, Ploner S, et al. An automatic, intercapillary area-based algorithm for quantifying diabetes-related capillary dropout using optical coherence tomography angiography. Retina. 2016;1(Suppl 1):S93–S101. doi:10.1097/IAE.0000000000001288
  • Mondal PP, Rajan K, Ahmad I. Filter for biomedical imaging and image processing. J Opt Soc Am a Opt Image Sci Vis. 2006;23(7):1678–1686. doi:10.1364/josaa.23.001678
  • Frangi AF, Niessen WJ, Vincken KL, Viergever MA, “Multiscale vessel enhancement filtering. In: Proceedings of medical image comput assisted intervention (MICCAI),” Lecture notes in computer science 1496; 1998. 130–137.
  • Myles PS, Cui J. Using the Bland-Altman method to measure agreement with repeated measures. Br J Anaesth. 2007;99(3):309–311. doi:10.1093/bja/aem214
  • Bland JM, Altman DG. Measurement error. BMJ. 1996;313(7059):744. doi:10.1136/bmj.313.7059.744
  • Zou GY. Confidence interval estimation for the Bland-Altman limits of agreement with multiple observations per individual. Stat Methods Med Res. 2013;22(6):630–642. doi:10.1177/0962280211402548
  • Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–310.
  • Carstensen B. 2010. Comparing Clinical Measurement Methods: A Practical Guide. Chichester, UK: Wiley, Chapter 11.1; ISBN 978-0-470-69423-7.
  • Lopes de Faria JM, Andreazzi Duarte D, Larico Chavez RF, Arthur AM, Arthur R, Iano Y. Reliability and validity of digital assessment of perifoveal capillary network measurement using high-resolution imaging. Br J Ophthalmol. 2014;98(6):726–729. doi:10.1136/bjophthalmol-2013-304100
  • Kim DY, Fingler J, Zawadzki RJ, et al. Noninvasive imaging of the foveal avascular zone with high-speed, phase-variance optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(1):85–92. doi:10.1167/iovs.11-8249
  • Matsunaga D, Yi J, Puliafito CA, Kashani AH. OCT angiography in healthy human subjects. Ophthalmic Surg Lasers Imaging Retina. 2014;45(6):510–515. doi:10.3928/23258160-20141118-04
  • Tam J, Dhamdhere KP, Tiruveedhula P, et al. Subclinical capillary changes in non-proliferative diabetic retinopathy. Optom Vis Sci. 2012;89(5):E692–703. doi:10.1097/OPX.0b013e3182548b07
  • Garcia JM, Lima TT, Louzada RN, Rassi AT, Isaac DL, Avila M. Diabetic Macular Ischemia Diagnosis: comparison between Optical Coherence Tomography Angiography and Fluorescein Angiography. J Ophthalmol. 2016;2016:3989310. doi:10.1155/2016/3989310
  • Tam J, Dhamdhere KP, Tiruveedhula P, et al. Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2011;52(12):9257–9266. doi:10.1167/iovs.11-8481
  • Li X, Yu Y. Quantitative analysis of retinal vessel density and thickness changes in diabetes mellitus evaluated using optical coherence tomography angiography: a cross-sectional study. BMC Ophthalmol. 2021;21:259. doi:10.1186/s12886-021-01988-2
  • Ma Y. ROSE: a Retinal OCT-Angiography Vessel Segmentation Dataset and New Model. IEEE Trans Med Imaging. 2021;40(3):928–939. doi:10.1109/TMI.2020.3042802
  • Martínez-Río J, Carmona EJ, Cancelas D, Novo J, Ortega M. Robust multimodal registration of fluorescein angiography and optical coherence tomography angiography images using evolutionary algorithms. Comput Biol Med. 2021;134:104529. doi:10.1016/j.compbiomed.2021.104529
  • Sun G, Liu X, Yu X. Multi-path cascaded U-net for vessel segmentation from fundus fluorescein angiography sequential images. Comput Methods Programs Biomed. 2021;211:106422. doi:10.1016/j.cmpb.2021.106422
  • Conti G, Postelmans L, Dorchy H. Screening for diabetic retinopathy with fluorescein angiography in patients with type 1 diabetes from adolescence to adult life. A retrospective study of the past 30 years of clinical practice in a tertiary Belgian centre. Endocrinol Diabetes Metab. 2022;5(1):e00304. doi:10.1002/edm2.304
  • Ashraf M, Wagdy W, Tawfik MA, Ahmed ISH, Souka A. Potential impact of fluorescein angiography as a primary imaging modality in the management of diabetic retinopathy. Indian J Ophthalmol. 2022;70(10):3579–3583. doi:10.4103/ijo.IJO_641_22
  • Elrashidy HE, Samir G. Optical coherence tomography angiography in comparison with fluorescein angiography in diabetic retinopathy. J Med Sci Res. 2022;5:187–193.
  • Bawany MH, Ding L, Ramchandran RS, Sharma G, Wykoff CC, Kuriyan AE. Automated vessel density detection in fluorescein angiography images correlates with vision in proliferative diabetic retinopathy. PLoS One. 2020;15(9):e0238958. doi:10.1371/journal.pone.0238958
  • Abbasnejad A, Tomkins-Netzer O, Winter A, et al. A fluorescein angiography-based computer-aided algorithm for assessing the retinal vasculature in diabetic retinopathy. Eye. 2022. doi:10.1038/s41433-022-02120-4
  • Nunez JM, Sen P, Rasheed R, et al. Deep Learning-Based Segmentation and Quantification of Retinal Capillary Non-Perfusion on Ultra-Wide-Field Retinal Fluorescein Angiography. J Clin Med. 2020;9(8):2537. doi:10.3390/jcm9082537
  • Gao Z, Pan X, Shao J, et al. Automatic interpretation and clinical evaluation for fundus fluorescein angiography images of diabetic retinopathy patients by deep learning. Br J Ophthalmol. 2022. doi:10.1136/bjo-2022-321472
  • Gao Z, Jin K, Yan Y, et al. End-to-end diabetic retinopathy grading based on fundus fluorescein angiography images using deep learning. Graefes Arch Clin Exp Ophthalmol. 2022;260(5):1663–1673. doi:10.1007/s00417-021-05503-7
  • Young LH, Kim J, Yakin M, et al. Automated Detection of Vascular Leakage in Fluorescein Angiography - A Proof of Concept. Transl Vis Sci Technol. 2022;11(7):19. doi:10.1167/tvst.11.7.19
  • Guo Y, Hormel TT, Xiong H, et al. Development and validation of a deep learning algorithm for distinguishing the nonperfusion area from signal reduction artifacts on OCT angiography. Biomed Opt Express. 2019;10(7):3257–3268. doi:10.1364/BOE.10.003257
  • Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Retinal Capillary Density and Foveal Avascular Zone Area Are Age-Dependent: quantitative Analysis Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2016;57(13):5780–5787. doi:10.1167/iovs.16-20045
  • Garrity ST, Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Quantitative Analysis of Three Distinct Retinal Capillary Plexuses in Healthy Eyes Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2017;58(12):5548–5555. doi:10.1167/iovs.17-22036
  • Coscas F, Sellam A, Glacet-Bernard A, et al. Normative Data for Vascular Density in Superficial and Deep Capillary Plexuses of Healthy Adults Assessed by Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT211–23. doi:10.1167/iovs.15-18793
  • Yu PK, Mehnert A, Athwal A, Sarunic MV, Yu DY. Use of the Retinal Vascular Histology to Validate an Optical Coherence Tomography Angiography Technique. Transl Vis Sci Technol. 2021;10(1):29. doi:10.1167/tvst.10.1.29
  • Zheng Y, Gandhi JS, Stangos AN, Campa C, Broadbent DM, Harding SP. Automated segmentation of foveal avascular zone in fundus fluorescein angiography. Invest Ophthalmol Vis Sci. 2010;51(7):3653–3659. doi:10.1167/iovs.09-4935
  • Bunce C, Stratton IM, Elders A, Czanner G, Doré C, Freemantle N; Ophthalmic Statistics Group. Ophthalmic statistics note 13: method agreement studies in ophthalmology-please don’t carry on correlating. Br J Ophthalmol. 2019;103(9):1201–1203. doi:10.1136/bjophthalmol-2018-313759