210
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

The Link Between Gastrointestinal Microbiome and Ocular Disorders

Pages 2133-2140 | Received 02 Apr 2023, Accepted 18 Jul 2023, Published online: 25 Jul 2023

References

  • Lin P. Importance of the intestinal microbiota in ocular inflammatory diseases: a review. Clin Experiment Ophthalmol. 2019;47(3):418–422. doi:10.1111/ceo.13493
  • Taneja V. Microbiome. In: Principles of Gender-Specific Medicine. Gulf Professional Publishing; 2017:569–583. doi:10.1016/b978-0-12-803506-1.00027-9
  • Scuderi G, Troiani E, Minnella AM. Gut microbiome in retina health: the crucial role of the gut-retina axis. Front Microbiol. 2022;12. doi:10.3389/fmicb.2021.726792
  • Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14. doi:10.3390/microorganisms7010014
  • Kodak S. Uveitis and the Gut Microbiota. Elsevier; 2022.
  • Floyd JL, Grant MB. The Gut–Eye axis: lessons learned from murine models. Ophthalmol Therapy. 2020;9(3):499–513. doi:10.1007/s40123-020-00278-2
  • Taylor R. The gut and the eye. Am Acad Ophthalmol. 2020. Available from: https://www.aao.org/eyenet/article/the-gut-and-the-eye#disqus_thread.
  • Fu X, Chen Y, Chen D. The role of gut microbiome in autoimmune uveitis. Ophthalmic Res. 2021;64(2):168–177. doi:10.1159/000510212
  • Kalyana Chakravarthy S, Jayasudha R, Sai Prashanthi G, et al. Dysbiosis in the Gut Bacterial Microbiome of Patients with Uveitis, an Inflammatory Disease of the Eye. Indian J Microbiol. 2018;58(4):457–469. doi:10.1007/s12088-018-0746-9
  • Kim E, Rana V, Lifson N. Gut microbiome – eyeWiki. eyewiki.aao.org. Available from: https://eyewiki.aao.org/Gut_Microbiome. Accessed June 22, 2022.
  • Xue W, Li JJ, Zou Y, Zou B, Wei L. Microbiota and ocular diseases. Front Cell Infect Microbiol. 2021;11. doi:10.3389/fcimb.2021.759333
  • Taylor AW. Ocular immune privilege. Eye. 2009;23(10):1885–1889. doi:10.1038/eye.2008.382
  • Wildner G, Diedrichs-Möhring M. Molecular mimicry and uveitis. Front Immunol. 2020;11. doi:10.3389/fimmu.2020.580636
  • Lin -H-H, Faunce DE, Stacey M, et al. The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J Exp Med. 2005;201(10):1615–1625. doi:10.1084/jem.20042307
  • Vendomèle J, Khebizi Q, Fisson S. Cellular and molecular mechanisms of Anterior Chamber-Associated Immune Deviation (ACAID): what we have learned from knockout mice. Front Immunol. 2017;8. doi:10.3389/fimmu.2017.01686
  • 2020–2021 BCSC Basic and Clinical Science CourseTM. www.aao.org; 2021. Available from: https://www.aao.org/bcscsnippetdetail.aspx?id=f106ab47-dc35-4a49-b0c0-92df8b01f086. Accessed July 19, 2023.
  • Zhou J, Yang J, Dai M, et al. A combination of inhibiting microglia activity and remodeling gut microenvironment suppresses the development and progression of experimental autoimmune uveitis. Biochem Pharmacol. 2020;180:114108. doi:10.1016/j.bcp.2020.114108
  • Kalogeropoulos D, Barry R, Kalogeropoulos C. The association between intestinal microbiome and autoimmune uveitis. Archivos de la Sociedad Española de Oftalmología. 2022;97(5):264–275. doi:10.1016/j.oftale.2021.01.012
  • NORD (National Organization for Rare Disorders). Behçet’s Syndrome; 2018. Available from: https://rarediseases.org/rare-diseases/behcets-syndrome/. Accessed June 22, 2022.
  • Ye Z, Zhang N, Wu C, et al. A metagenomic study of the gut microbiome in Behcet’s disease. Microbiome. 2018;6(1). doi:10.1186/s40168-018-0520-6
  • Peng L, Li Z-R, Green RS, Holzmanr IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-Activated Protein Kinase in Caco-2 cell monolayers. J Nutr. 2009;139(9):1619–1625. doi:10.3945/jn.109.104638
  • Wang Q, Yi S, Su G, et al. Changes in the gut microbiome contribute to the development of Behcet’s disease via adjuvant effects. Front Cell Dev Biol. 2021;9. doi:10.3389/fcell.2021.716760
  • Gill T, Rosenbaum JT. Putative pathobionts in HLA-B27-associated spondyloarthropathy. Front Immunol. 2021;11. doi:10.3389/fimmu.2020.586494
  • Asquith M, Rosenbaum JT. The interaction between host genetics and the microbiome in the pathogenesis of spondyloarthropathies. Curr Opin Rheumatol. 2016;28(4):405–412. doi:10.1097/bor.0000000000000299
  • Soloski MJ, Metcalf ES, Donnenberg MS. Salmonella as an inducer of autoimmunity. EcoSal Plus. 2007;2(2). doi:10.1128/ecosalplus.8.8.13
  • Gerloni V, Fantini F. L'artrite reattiva [Reactive arthritis]. La Pediatria Medica E Chirurgica. 1990;12(5):447–451. Italian.
  • Otasevic L, Walduck A, Meyer TF, et al. Helicobacter pylori infection in anterior uveitis*. Infection. 2005;33(2):82–85. doi:10.1007/s15010-005-4068-6
  • Ye Z, Wu C, Zhang N, et al. Altered gut microbiome composition in patients with Vogt-Koyanagi-Harada disease. Gut Microbes. 2020;11(3):539–555. doi:10.1080/19490976.2019.1700754
  • Sternes PR, Martin TM, Paley M, et al. HLA-A alleles including HLA-A29 affect the composition of the gut microbiome: a potential clue to the pathogenesis of birdshot retinochoroidopathy. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-74751-0
  • Moon J, Yoon CH, Choi SH, Kim MK. Can gut microbiota affect dry eye syndrome? Int J Mol Sci. 2020;21(22):8443. doi:10.3390/ijms21228443
  • Schaefer L, Trujillo-Vargas CM, Midani FS, Pflugfelder SC, Britton RA, de Paiva CS. Gut microbiota from Sjögren syndrome patients causes decreased T regulatory cells in the lymphoid organs and desiccation-induced corneal barrier disruption in mice. Front Med. 2022;9. doi:10.3389/fmed.2022.852918
  • Moon J, Choi SH, Yoon CH, Kim MK, Appel S. Gut dysbiosis is prevailing in Sjögren’s syndrome and is related to dry eye severity. PLoS One. 2020;15(2):e0229029. doi:10.1371/journal.pone.0229029
  • Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99(4):1877–2013. doi:10.1152/physrev.00018.2018
  • Jiao X, Pei X, Dingli L, et al. Microbial reconstitution improves aging-driven lacrimal gland circadian dysfunction. Am J Pathol. 2021;191(12):2091–2116. doi:10.1016/j.ajpath.2021.08.006
  • Ho Yoon C, Suk Ryu J, Moon J, Kum Kim M. Association between aging-dependent gut microbiome dysbiosis and dry eye severity in C57BL/6 male mouse model: a pilot study. BMC Microbiol. 2021;21(1). doi:10.1186/s12866-021-02173-7
  • Song H, Xiao K, Zhengyu C, Long Q. Analysis of conjunctival sac microbiome in dry eye patients with and without Sjögren’s syndrome. Front Med. 2022;9. doi:10.3389/fmed.2022.841112
  • Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory Bowel disease. Microorganisms. 2020;8(11):1715. doi:10.3390/microorganisms8111715
  • World Health Organization. Diabetes. World Health Organization; 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed July 19, 2023.
  • National Institute of Diabetes and Digestive and Kidney Diseases. Insulin resistance & prediabetes|NIDDK. National Institute of Diabetes and Digestive and Kidney Diseases; 2019. Available from: https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/prediabetes-insulin-resistance. Accessed July 19, 2023.
  • Tanase DM, Gosav EM, Neculae E, et al. Role of Gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM). Nutrients. 2020;12(12):3719. doi:10.3390/nu12123719
  • Jiao J, Yu H, Yao L, Li L, Yang X, Liu L. Recent Insights into the role of gut microbiota in diabetic retinopathy. J Inflamm Res. 2021;14:6929–6938. doi:10.2147/jir.s336148
  • Huang Y, Wang Z, Ma H, et al. Dysbiosis and Implication of the Gut microbiota in diabetic retinopathy. Front Cell Infect Microbiol. 2021;11. doi:10.3389/fcimb.2021.646348
  • Narayanan R, Butani V, Boyer DS, et al. Complement factor H polymorphism in age-related macular degeneration. Ophthalmology. 2007;114(7):1327–1331. doi:10.1016/j.ophtha.2006.10.035
  • Zinkernagel MS, Zysset-Burri DC, Keller I, et al. Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci Rep. 2017;7(1). doi:10.1038/srep40826
  • Gielda LM, DiRita VJ, Finlay BB. Zinc competition among the intestinal microbiota. mBio. 2012;3(4). doi:10.1128/mbio.00171-12
  • Andriessen EMMA, Wilson AM, Mawambo G, et al. Gut microbiota influences pathological angiogenesis in obesity‐driven choroidal neovascularization. EMBO Mol Med. 2016;8(12):1366–1379. doi:10.15252/emmm.201606531
  • Scholz R, Langmann T. Gut flora connects obesity with pathological angiogenesis in the eye. EMBO Mol Med. 2016;8(12):1361–1363. doi:10.15252/emmm.201607165
  • Jindal A, Salim S, Kozak A, et al.: Primary Open-Angle Glaucoma – eyeWiki. eyewiki.aao.org; 2021. Available from: https://eyewiki.aao.org/Primary_Open-Angle_Glaucoma. Accessed July 19, 2023.
  • Tang J, Tang Y, Yi I, Chen DF. The role of commensal microflora-induced T cell responses in glaucoma neurodegeneration. Prog Brain Res. 2020;79–97. doi:10.1016/bs.pbr.2020.06.002
  • Tezel G, Yang J, Wax MB. Heat shock proteins, immunity and glaucoma. Brain Res Bull. 2004;62(6):473–480. doi:10.1016/s0361-9230(03)00074-1
  • Tsai T, Grotegut P, Reinehr S, Joachim SC. Role of heat shock proteins in glaucoma. Int J Mol Sci. 2019;20(20):5160. doi:10.3390/ijms20205160
  • Al-Zubidi N. Thyroid eye disease - EyeWiki. eyewiki.aao.org; 2023. Available from: https://eyewiki.aao.org/Thyroid_Eye_Disease. Accessed July 19, 2023.
  • Giulia Masetti SM, Luise Köhling H, Danila Covelli JPB, et al. Gut microbiota in experimental murine model of Graves’ orbitopathy established in different environments may modulate clinical presentation of disease. Microbiome. 2018;6(1). doi:10.1186/s40168-018-0478-4
  • Hou J, Tang Y, Chen Y, Chen D. The role of the microbiota in Graves’ disease and Graves’ orbitopathy. Front Cell Infect Microbiol. 2021;11. doi:10.3389/fcimb.2021.739707
  • Moshkelgosha S, Luise Verhasselt H, Masetti G, et al. Modulating gut microbiota in a mouse model of Graves’ orbitopathy and its impact on induced disease. Microbiome. 2021;9(1). doi:10.1186/s40168-020-00952-4
  • Chistiakov DA, Chistiakova EI, Voronova NV, Turakulov RI, Savost’anov KV. A variant of the Il2ra / Cd25 gene predisposing to Graves’ disease is associated with increased levels of soluble interleukin-2 receptor. Scand J Immunol. 2011;74(5):496–501. doi:10.1111/j.1365-3083.2011.02608.x
  • Kung AWC, Lai CL, Wong KL, Tam CF. Thyroid functions in patients treated with Interleukin-2 and Lymphokine-activated killer cells. QJM. 1992. doi:10.1093/oxfordjournals.qjmed.a068647
  • Rocha-Ramírez LM, Pérez-Solano RA, Castañón-Alonso SL, et al. Probiotic lactobacillus strains stimulate the inflammatory response and activate human macrophages. J Immunol Res. 2017;2017:1–14. doi:10.1155/2017/4607491
  • Alok A, Singh I, Singh S, Kishore M, Jha P, Iqubal MA. Probiotics: a new era of biotherapy. Adv Biomed Res. 2017;6(1):31. doi:10.4103/2277-9175.192625
  • Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science. 2016;352(6285):535–538. doi:10.1126/science.aad9382
  • Kim J, Choi S, Kim Y, et al. Clinical effect of IRT-5 probiotics on immune modulation of autoimmunity or alloimmunity in the eye. Nutrients. 2017;9(11):1166. doi:10.3390/nu9111166
  • Choi SH, Oh JW, Ryu JS, et al. IRT5 probiotics changes immune modulatory protein expression in the extraorbital lacrimal glands of an autoimmune dry eye mouse model. Investigat Ophthalmol Visual Sci. 2020;61(3):42. doi:10.1167/iovs.61.3.42
  • Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol. 2016;7. doi:10.3389/fmicb.2016.00979
  • Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A. Probiotic mechanisms of action. Ann Nutr Metab. 2012;61(2):160–174. doi:10.1159/000342079
  • Nakamura YK, Janowitz C, Metea C, et al. Short chain fatty acids ameliorate immune-mediated uveitis partially by altering migration of lymphocytes from the intestine. Sci Rep. 2017;7(1). doi:10.1038/s41598-017-12163-3
  • Chen N, Wu J, Wang J, et al. Short chain fatty acids inhibit endotoxin-induced uveitis and inflammatory responses of retinal astrocytes. Exp Eye Res. 2021;206:108520. doi:10.1016/j.exer.2021.108520
  • Rowan S, Jiang S, Korem T, et al. Involvement of a gut–retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proce Natl Acad Sci. 2017;114(22):E4472–81. doi:10.1073/pnas.1702302114
  • Dao D, Xie B, Nadeem U, et al. High-Fat Diet Alters the Retinal Transcriptome in the Absence of Gut Microbiota. Cells. 2021;10(8):2119. doi:10.3390/cells10082119
  • Nakamura YK, Metea C, Karstens L, et al. Gut microbial alterations associated with protection from autoimmune uveitis. Investigat Ophthalmol Visual Sci. 2016;57(8):3747. doi:10.1167/iovs.16-19733
  • Ivanov II, Frutos RDL, Manel N. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4(4):337–349. doi:10.1016/j.chom.2008.09.009
  • Niess JH, Leithäuser F, Adler G, Reimann J. Commensal gut flora drives the expansion of proinflammatory CD4 T cells in the colonic lamina propria under normal and inflammatory conditions. J Immunol. 2007;180(1):559–568. doi:10.4049/jimmunol.180.1.559
  • Hill DA, Hoffmann C, Abt MC, et al. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol. 2010;3(2):148–158. doi:10.1038/mi.2009.132
  • Schmidtner AK, Slattery DA, Gläsner J, et al. Minocycline alters behavior, microglia and the gut microbiome in a trait-anxiety-dependent manner. Transl Psychiatry. 2019;9(1). doi:10.1038/s41398-019-0556-9
  • Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol. 2013;169(2):337–352. doi:10.1111/bph.12139
  • Horai R, Caspi RR. Microbiome and Autoimmune Uveitis. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.00232
  • Hardianti Gunardi T, Paramita Susantono D, Arus Victor A, Sitompul R. Atopobiosis and dysbiosis in ocular diseases: is fecal microbiota transplant and probiotics a promising solution? J Ophthalmic Vis Res. 2021. doi:10.18502/jovr.v16i4.9754
  • Parker A, Romano S, Ansorge R, et al. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. Microbiome. 2022;10(1). doi:10.1186/s40168-022-01243-w
  • Selvanderan S, Goldblatt F, Nguyen N, Costello S. Faecal microbiota transplantation for Clostridium difficile infection resulting in a decrease in psoriatic arthritis disease activity. Clin Exp Rheumatol. 2019. Available from: https://www.clinexprheumatol.org/abstract.asp?a=13480.
  • Zhang X; Peking Union Medical College Hospital. Efficacy and safety of faecal microbiota transplantation in patients with rheumatoid arthritis refractory to methotrexate: a 24-week, double-blind, randomised trial. Clinicaltrials.gov; 2019. Available from: Accessed June 22, 2022. https://clinicaltrials.gov/ct2/show/NCT03944096.
  • Ellingsen T; Odense University Hospital, Region of Southern Denmark. Efficacy and safety of Fecal Microbiota Transplantation (FMT) in patients with peripheral psoriatic arthritis: a 6-month, double-blind, randomized, placebo-controlled trial. Clinicaltrials.gov; 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT03058900. Accessed June 22, 2022.
  • Hiltunen J. The effect of fecal microbiota transplantation in Ankylosing Spondylitis (AS) patients. - full text view - ClinicalTrials.gov. Clinicaltrials.gov; 2018. Available from: https://clinicaltrials.gov/ct2/show/NCT03726645. Accessed August 19, 2019.
  • Wang C, Zaheer M, Bian F, et al. Sjögren-Like lacrimal keratoconjunctivitis in germ-free mice. Int J Mol Sci. 2018;19(2):565. doi:10.3390/ijms19020565