216
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Using Light Meters to Investigate the Light-Myopia Association – A Literature Review of Devices and Research Methods

ORCID Icon &
Pages 2737-2760 | Received 24 May 2023, Accepted 18 Aug 2023, Published online: 19 Sep 2023

References

  • Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–1042. doi:10.1016/j.ophtha.2016.01.006
  • Karthikeyan SK, Ashwini DL, Priyanka M, Nayak A, Biswas S. Physical activity, time spent outdoors, and near work in relation to myopia prevalence, incidence, and progression: an overview of systematic reviews and meta-analyses. Indian J Ophthalmol. 2022;70(3):728–739. doi:10.4103/ijo.IJO_1564_21
  • Muralidharan AR, Lança C, Biswas S, et al. Light and myopia: from epidemiological studies to neurobiological mechanisms. Ther Adv Ophthalmol. 2021;13:25158414211059246. doi:10.1177/25158414211059246
  • Karouta C, Ashby RS. Correlation between light levels and the development of deprivation myopia. Invest Ophthalmol Vis Sci. 2014;56(1):299–309. doi:10.1167/iovs.14-15499
  • Biswas S, Muralidharan AR, Betzler BK, et al. A duration-dependent interaction between high-intensity light and unrestricted vision in the drive for myopia control. Invest Ophthalmol Vis Sci. 2023;64(3):31. doi:10.1167/iovs.64.3.31
  • Read SA, Collins MJ, Vincent SJ. Light exposure and physical activity in myopic and emmetropic children. Optom Vis Sci. 2014;91(3):330–341. doi:10.1097/OPX.0000000000000160
  • Read SA, Collins MJ, Vincent SJ. Light exposure and eye growth in childhood. Invest Ophthalmol Vis Sci. 2015;56(11):6779–6787. doi:10.1167/iovs.14-15978
  • Mirhajianmoghadam H, Piña A, Ostrin LA. Objective and subjective behavioral measures in myopic and non-myopic children during the COVID-19 pandemic. Trans Vis Sci Technol. 2021;10(11):4. doi:10.1167/tvst.10.11.4
  • Wu P-C, Chen C-T, Lin K-K, et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology. 2018;125(8):1239–1250. doi:10.1016/j.ophtha.2017.12.011
  • He M, Xiang F, Zeng Y, et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA. 2015;314(11):1142–1148. doi:10.1001/jama.2015.10803
  • Wu P-C, Tsai C-L, Wu H-L, Yang Y-H, Kuo H-K. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology. 2013;120(5):1080–1085. doi:10.1016/j.ophtha.2012.11.009
  • Li M, Lanca C, Tan C-S, et al. Association of time outdoors and patterns of light exposure with myopia in children. Br J Ophthalmol Epub. 2021;107:133.
  • Dharani R, Lee C-F, Theng ZX, et al. Comparison of measurements of time outdoors and light levels as risk factors for myopia in young Singapore children. Eye. 2012;26(7):911–918. doi:10.1038/eye.2012.49
  • Morgan IG, P-C W, Ostrin LA, et al. IMI risk factors for myopia. Invest Ophthalmol Vis Sci. 2021;62(5):3. doi:10.1167/iovs.62.5.3
  • Figueiro MG, Hamner R, Bierman A, Rea MS. Comparisons of three practical field devices used to measure personal light exposures and activity levels. Light Res Technol. 2013;45(4):421–434. doi:10.1177/1477153512450453
  • Read SA, Vincent SJ, Tan C-S, Ngo C, Collins MJ, Saw S-M. Patterns of daily outdoor light exposure in Australian and Singaporean children. Trans Vis Sci Technol. 2018;7(3):8. doi:10.1167/tvst.7.3.8
  • Bhandari KR, Mirhajianmoghadam H, Ostrin LA. Wearable sensors for measurement of viewing behavior, light exposure, and sleep. Sensors. 2021;21(21):7096. doi:10.3390/s21217096
  • Joyce DS, Zele AJ, Feigl B, Adhikari P. The accuracy of artificial and natural light measurements by actigraphs. J Sleep Res. 2020;29(5):e12963. doi:10.1111/jsr.12963
  • Howell CM, McCullough SJ, Doyle L, Murphy MH, Saunders KJ. Reliability and validity of the Actiwatch and Clouclip for measuring illumination in real-world conditions. Ophthalmic Physiol Opt. 2021;41(5):1048–1059. doi:10.1111/opo.12860
  • Wen L, Cheng Q, Cao Y, et al. The Clouclip, a wearable device for measuring near-work and outdoor time: validation and comparison of objective measures with questionnaire estimates. Acta Ophthalmol. 2021;99(7):e1222–e1235. doi:10.1111/aos.14785
  • Aarts MP, van Duijnhoven J, Aries MB, Rosemann AL. Performance of personally worn dosimeters to study non-image forming effects of light: assessment methods. Build Environ. 2017;117:60–72. doi:10.1016/j.buildenv.2017.03.002
  • Ulaganathan S, Read SA, Collins MJ, Vincent SJ. Measurement duration and frequency impact objective light exposure measures. Optom Vis Sci. 2017;94(5):588–597. doi:10.1097/OPX.0000000000001041
  • Flanagan SC, Cobice D, Richardson P, Sittlington JJ, Saunders KJ. Elevated melatonin levels found in young myopic adults are not attributable to a shift in circadian phase. Invest Ophthalmol Vis. 2020;61(8):45. doi:10.1167/iovs.61.8.45
  • Morgan I, Rose K. How genetic is school myopia? Prog Retin Eye Res. 2005;24(1):1–38. doi:10.1016/j.preteyeres.2004.06.004
  • Gordon-Shaag A, Shneor E, Doron R, Levine J, Ostrin LA. Environmental and behavioral factors with refractive error in Israeli boys. Optom Vis Sci. 2021;98(8):959–970. doi:10.1097/OPX.0000000000001755
  • Grzybowski A, Kanclerz P, Tsubota K, Lanca C, Saw S-M. A review on the epidemiology of myopia in school children worldwide. BMC Ophthalmol. 2020;20(1):27. doi:10.1186/s12886-019-1220-0
  • Rudnicka AR, Kapetanakis VV, Wathern AK, et al. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention. Br J Ophthalmol. 2016;100(7):882–890. doi:10.1136/bjophthalmol-2015-307724
  • Hashemi H, Khabazkhoob M, Asharlous A, et al. Cycloplegic autorefraction versus subjective refraction: the Tehran Eye Study. Br J Ophthalmol. 2016;100(8):1122–1127. doi:10.1136/bjophthalmol-2015-307871
  • Esaki Y, Kitajima T, Obayashi K, Saeki K, Fujita K, Iwata N. Daytime light exposure in daily life and depressive symptoms in bipolar disorder: a cross-sectional analysis in the APPLE cohort. J Psychiatr Res. 2019;116:151–156. doi:10.1016/j.jpsychires.2019.06.010
  • Scheuermaier K, Laffan AM, Duffy JF. Light exposure patterns in healthy older and young adults. J Biol Rhythms. 2010;25(2):113–122. doi:10.1177/0748730410361916
  • Liu L, Marler MR, Parker BA, et al. The relationship between fatigue and light exposure during chemotherapy. Support Care Cancer. 2005;13(12):1010–1017. doi:10.1007/s00520-005-0824-5
  • Mahroo OA, Gavin EA, Williams KM, de SE, Hammond CJ, Morrison DA. Potential effect of ‘cut-off intensity’ on correlation between light meter measurements and time outdoors. Eye (Lond). 2013;27(8):990–991. doi:10.1038/eye.2013.88
  • Dharani R, Lee C-F, Finkelstein EA, Saw S-M. Response to Mahroo et al. Eye (Lond). 2013;27(8):991. doi:10.1038/eye.2013.89
  • Landis EG, Yang V, Brown DM, Pardue MT, Read SA. Dim light exposure and myopia in children. Invest Ophthalmol Vis Sci. 2018;59(12):4804–4811. doi:10.1167/iovs.18-24415
  • Alvarez AA. Light, Nearwork, and Visual Environment Risk Factors in Myopia. Berkeley: University of California; 2012.
  • Alvarez AA, Wildsoet CF. Quantifying light exposure patterns in young adult students. J Mod Opt. 2013;60(14):1200–1208. doi:10.1080/09500340.2013.845700
  • Li S-M, Ran A-R, Kang M-T, et al. Effect of text messaging parents of school-aged children on outdoor time to control myopia: a randomized clinical trial. JAMA Pediatr. 2022;176(11):1077–1083. doi:10.1001/jamapediatrics.2022.3542
  • Ohno Y, Goodman T, Blattner P, et al. Principles governing photometry (2nd edition). Metrologia. 2020;57(2):20401. doi:10.1088/1681-7575/ab72f1
  • Koninklijke Philips N.V.. Actiwatch 2 - Activity Monitor; n.d. Available from: https://www.usa.philips.com/healthcare/product/HC1044809/actiwatch-2-activity-monitor. Accessed August 15, 2022.
  • Koninklijke Philips N.V. Actiwatch Specification Sheet; 2019.
  • Ostrin LA. Objectively measured light exposure in emmetropic and myopic adults. Optom Vis Sci. 2017;94(2):229–238. doi:10.1097/OPX.0000000000001013
  • Ostrin LA, Sajjadi A, Benoit JS. Objectively measured light exposure during school and summer in children. Optom Vis Sci. 2018;95(4):332–342. doi:10.1097/OPX.0000000000001208
  • Koninklijke Philips N.V.. Actiwatch Spectrum - Activity Monitor; n.d. Available from: https://www.usa.philips.com/healthcare/product/HC1046964/actiwatch-spectrum-activity-monitor. Accessed September 26, 2022.
  • Koninklijke Philips N.V. Characterization of Light Sensor Performance for Three Models of Actiwatch: Actiwatch-64, Actiwatch 2 and Actiwatch Spectrum; 2008.
  • Udovičić L, Janßen M, Nowack D, Price LLA Personenbezogene Lichtexpositionsmessungen in Feldstudien - Eine Handlungsanleitung zur Charakterisierung und Kalibrierung von Lichtexpositionsdetektoren [Light exposure measurements in field studies - A guide to action for the characterization and calibration of light exposure detectors]; 2016. German.
  • Koninklijke Philips N.V. Actiwatch Spectrum Plus - Get the Actiwatch advantage; n.d. Available from: https://www.usa.philips.com/healthcare/product/HCNOCTN445/actiwatch-spectrum-plus-get-The-actiwatch-advantage. Accessed September 28, 2022.
  • Koninklijke Philips N.V. Actiwatch Spectrum PRO: get the Actiwatch Advantage; n.d. Available from: https://www.usa.philips.com/healthcare/product/HCNOCTN446/actiwatch-spectrum-pro-get-The-actiwatch-advantage. Accessed October 21, 2022.
  • Verkicharla PK, Ramamurthy D, Nguyen QD, et al. Development of the FitSight fitness tracker to increase time outdoors to prevent myopia. Trans Vis Sci Technol. 2017;6(3):20. doi:10.1167/tvst.6.3.20
  • Sony Mobile Communications Inc. User Guide: SmartWatch 3 SWR50; 2014.
  • Onset Computer Corporation. HOBO® Pendant Temperature/Light Data Logger (Part # UA-002-XX); Doc # 9556-I, MAN-UA-002; 2012.
  • Ye B, Liu K, Cao S, et al. Discrimination of indoor versus outdoor environmental state with machine learning algorithms in myopia observational studies. J Transl Med. 2019;17(1):314. doi:10.1186/s12967-019-2057-2
  • Silicon Labs. Si1132: UV Index And Ambient Light Sensor IC With I2C Interface; 2014. Rev 1.2.
  • Dhakal R, Rudrapankte JR, Chittajallu HSNS, et al. Development and validation of a ‘MyLyt’ wearable light tracking device. Ophthalmic Physiol Opt. 2023;43(1):132–140. doi:10.1111/opo.13061
  • Vivior AG. Vivior Mark 3+: Technical Information; n.d.
  • Ostrin LA, Abbott KS, Queener HM. Attenuation of short wavelengths alters sleep and the ipRGC pupil response. Ophthalmic Physiol Opt. 2017;37(4):440–450. doi:10.1111/opo.12385
  • Ostrin LA, Read SA, Vincent SJ, Collins MJ. Sleep in myopic and non-myopic children. Trans Vis Sci Technol. 2020;9(9):22. doi:10.1167/tvst.9.9.22
  • Read SA, Pieterse EC, Alonso-Caneiro D, et al. Daily morning light therapy is associated with an increase in choroidal thickness in healthy young adults. Sci Rep. 2018;8(1):8200. doi:10.1038/s41598-018-26635-7
  • Ulaganathan S, Read SA, Collins MJ, Vincent SJ. Daily axial length and choroidal thickness variations in young adults: associations with light exposure and longitudinal axial length and choroid changes. Exp Eye Res. 2019;189:107850. doi:10.1016/j.exer.2019.107850
  • Franklin KJ The effects of environment and lifestyle on eye growth. Birmingham: Aston University; 2020.
  • Ulaganathan S, Read SA, Collins MJ, Vincent SJ. Influence of seasons upon personal light exposure and longitudinal axial length changes in young adults. Acta Ophthalmol. 2019;97(2):e256–e265. doi:10.1111/aos.13904
  • Williams R, Bakshi S, Ostrin EJ, Ostrin LA. Continuous objective assessment of near work. Sci Rep. 2019;9(1):6901. doi:10.1038/s41598-019-43408-y
  • Abbott KS, Queener HM, Ostrin LA. The ipRGC-driven pupil response with light exposure, refractive error, and sleep. Optom Vis Sci. 2018;95(4):323–331. doi:10.1097/OPX.0000000000001198
  • Burfield HJ, Carkeet A, Ostrin LA. Ocular and systemic diurnal rhythms in emmetropic and myopic adults. Invest Ophthalmol Vis Sci. 2019;60(6):2237–2247. doi:10.1167/iovs.19-26711
  • Ostrin LA. The ipRGC-driven pupil response with light exposure and refractive error in children. Ophthalm Physiol Opt. 2018;38(5):503–515. doi:10.1111/opo.12583
  • Ostrin LA, Jnawali A, Carkeet A, Patel NB. Twenty-four hour ocular and systemic diurnal rhythms in children. Ophthalm Physiol Opt. 2019;39(5):358–369. doi:10.1111/opo.12633
  • Shneor E, Doron R, Levine J, et al. Objective behavioral measures in children before, during, and after the COVID-19 lockdown in Israel. Int J Environ Res Public Health. 2021;18(16):8732. doi:10.3390/ijerph18168732
  • Harb EN, Chan M, Tran A, Wildsoet CF. Characteristics of indoor and outdoor light exposure differ with refractive status in young adults [conference abstract]. Invest Ophthalmol Vis Sci. 2016;57(12):2473.
  • Koninklijke Philips N.V. Professional sleep and activity monitoring solutions: Actiwatch monitoring systems; 2013.
  • Li L, Zhu H, Wen L, Lan W, Yang Z. An approach of combining convolution neural network and graph convolution network to predict the progression of myopia. Neural Process Lett. 2021.
  • Wen L, Cheng Q, Lan W, et al. An objective comparison of light intensity and near-visual tasks between rural and urban school children in china by a wearable device Clouclip. Trans Vis Sci Technol. 2019;8(6):15. doi:10.1167/tvst.8.6.15
  • Li L, Wen L, Lan W, Zhu H, Yang Z. A novel approach to quantify environmental risk factors of myopia: combination of wearable devices and big data science. Tran Vis Sci Technol. 2020;9(13):17. doi:10.1167/tvst.9.13.17
  • Wen L, Cao Y, Cheng Q, et al. Objectively measured near work, outdoor exposure and myopia in children. Br J Ophthalmol. 2020;104(11):1542–1547. doi:10.1136/bjophthalmol-2019-315258
  • Bhandari KR, Shukla D, Mirhajianmoghadam H, Ostrin LA. Objective measures of near viewing and light exposure in schoolchildren during COVID-19. Optom Vis Sci. 2022;99(3):241–252. doi:10.1097/OPX.0000000000001871
  • Hangzhou JinZhiJing Technology Co. Ltd. CLOUCLIP: Myopia Related Behavioral Control - Smart Device - Big Data; n.d.
  • Saw SM, Zhang X, Pu S-H, Inventors. Device to prevent a condition or disease associated with a lack of outdoor time. WO2015152818A1. October 8, 2015.
  • Schmid KL, Leyden K, Chiu Y, et al. Assessment of daily light and ultraviolet exposure in young adults. Optom Vis Sci. 2013;90(2):148–155. doi:10.1097/OPX.0b013e31827cda5b
  • Moafa MAM Quantifying Risk Factors for Myopia: Instrument Validation and Establishing Dosage for Light Intensity and Duration. Sydney: The University of Sydney; 2019.
  • Backhouse S, Ng H, Phillips J Light exposure patterns in children - a pilot study. In: Schaeffel F, Feldkaemper M, eds. Myopia: Proceedings of the 13th International Conference: Optometry and Vision Science; 2011.
  • He X, Sankaridurg P, Xiong S, et al. Shanghai Time Outside to Reduce Myopia trial: design and baseline data. Clin Exp Ophthalmol. 2019;47(2):171–178. doi:10.1111/ceo.13391
  • He X, Sankaridurg P, Wang J, et al. Time outdoors in reducing myopia: a school-based cluster randomized trial with objective monitoring of outdoor time and light intensity. Ophthalmology. 2022;129(11):1245–1254. doi:10.1016/j.ophtha.2022.06.024
  • Tanrıverdi C, Tabakcı BN, Kılıç A, Mrochen MC Objective measurement of photopic illuminance rate in daily life of progressive myopic children. [poster presentation]: ARVO Annual Meeting, Vancouver, BC, Canada. 2019.
  • Pajic B, Zakharov P, Pajic-Eggspuehler B, Cvejic Z. User friendliness of a wearable visual behavior monitor for cataract and refractive surgery. Appl Sci (Basel). 2020;10(6):2190. doi:10.3390/app10062190
  • Fan Y, Liao J, Liu S, et al. Effect of time outdoors and near-viewing time on myopia progression in 9- to 11-year-old children in Chongqing. Optom Vis Sci. 2022;99(6):489–495. doi:10.1097/OPX.0000000000001898
  • Nishanth S, Manoharan K, Srinivasan M, et al. Accurate measurement of outdoor activities in children with myopia: development of an affordable wearable device [conference abstract]. Invest Ophthalmol Vis Sci. 2022;63(7):2144–A0172.
  • Hartmeyer SL, Webler FS, Andersen M. Towards a framework for light-dosimetry studies: methodological considerations. Light Res Technol. 2022;147715352211032.
  • Lingham G, Mackey DA, Lucas R, Yazar S. How does spending time outdoors protect against myopia? A review. Br J Ophthalmol. 2020;104(5):593–599. doi:10.1136/bjophthalmol-2019-314675
  • Ding B-Y, Shih Y-F, Lin LLK, Hsiao CK, Wang I-J. Myopia among schoolchildren in East Asia and Singapore. Surv Ophthalmol. 2017;62(5):677–697. doi:10.1016/j.survophthal.2017.03.006
  • Gwiazda J, Deng L, Manny R, Norton TT. Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. Invest Ophthalmol Vis Sci. 2014;55(2):752–758. doi:10.1167/iovs.13-13029
  • Cui D, Trier K, Munk Ribel-Madsen S. Effect of day length on eye growth, myopia progression, and change of corneal power in myopic children. Ophthalmology. 2013;120(5):1074–1079. doi:10.1016/j.ophtha.2012.10.022
  • Donovan L, Sankaridurg P, Ho A, et al. Myopia progression in Chinese children is slower in summer than in winter. Optom Vis Sci. 2012;89(8):1196–1202. doi:10.1097/OPX.0b013e3182640996
  • Henrich J, Heine SJ, Norenzayan A. The weirdest people in the world? Behav Brain Sci. 2010;33(2–3):61–135. doi:10.1017/S0140525X0999152X
  • Wen L, Cao Y, Huang Y, et al. Diverse visual behavior patterns in students in the same classroom [conference abstract]. Invest Ophthalmol Vis Sci. 2017;58(8):2403.
  • Refinetti R. Chronotype variability and patterns of light exposure of a large cohort of United States residents. Yale J Biol Med. 2019;92(2):179–186.
  • Markvart J, Hansen ÅM, Christoffersen J. Comparison and correction of the light sensor output from 48 wearable light exposure devices by using a side-by-side field calibration method. LEUKOS. 2015;11(3):155–171. doi:10.1080/15502724.2015.1020948
  • French AN, Ashby RS, Morgan IG, Rose KA. Time outdoors and the prevention of myopia. Exp Eye Res. 2013;114:58–68. doi:10.1016/j.exer.2013.04.018