166
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

A Systematic Review of Digital Ophthalmoscopes in Medicine

ORCID Icon, , , , , & show all
Pages 2957-2965 | Received 06 Jul 2023, Accepted 22 Sep 2023, Published online: 06 Oct 2023

References

  • American Academy of Ophthalmology. Undiagnosed Glaucoma — a pressing U.S. Problem; 2019. Available from: https://www.aao.org/eyenet/academy-live/detail/undiagnosed-glaucoma-pressing-u-s-problem. Accessed May 11, 2022.
  • Khairallah M, Kahloun R, Bourne R, et al. Number of people blind or visually impaired by cataract worldwide and in world regions, 1990 to 2010. Invest Ophthalmol Vis Sci. 2015;56(11):6762–6769. doi:10.1167/iovs.15-17201
  • Salongcay RP, Silva PS. The role of teleophthalmology in the management of diabetic retinopathy. Asia Pac J Ophthalmol Phila Pa. 2018;7(1):17–21. doi:10.22608/APO.2017479
  • Kovarik JJ, Eller AW, Willard LA, Ding J, Johnston JM, Waxman EL. Prevalence of undiagnosed diabetic retinopathy among inpatients with diabetes: the diabetic retinopathy inpatient study (DRIPS). BMJ Open Diabetes Res Care. 2016;4(1):e000164. doi:10.1136/bmjdrc-2015-000164
  • Saleem SM, Pasquale LR, Sidoti PA, Tsai JC. Virtual ophthalmology: telemedicine in a COVID-19 Era. Am J Ophthalmol. 2020;216:237–242. doi:10.1016/j.ajo.2020.04.029
  • Maa AY, Wojciechowski B, Hunt KJ, et al. Early experience with Technology-Based Eye Care Services (TECS): a novel ophthalmologic telemedicine initiative. Ophthalmology. 2017;124(4):539–546. doi:10.1016/j.ophtha.2016.11.037
  • Ramchandran RS, Yilmaz S, Greaux E, Dozier A. Patient perceived value of teleophthalmology in an urban, low-income US population with diabetes. PLoS One. 2020;15(1):e0225300. doi:10.1371/journal.pone.0225300
  • Karakaya M, Hacisoftaoglu RE. Comparison of smartphone-based retinal imaging systems for diabetic retinopathy detection using deep learning. BMC Bioinform. 2020;21(4):259. doi:10.1186/s12859-020-03587-2
  • Russo A, Morescalchi F, Costagliola C, Delcassi L, Semeraro F. Comparison of smartphone ophthalmoscopy with slit-lamp biomicroscopy for grading diabetic retinopathy. Am J Ophthalmol. 2015;159(2):360–364.e1. doi:10.1016/j.ajo.2014.11.008
  • Wilkinson CP, Ferris FL, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–1682. doi:10.1016/S0161-6420(03)00475-5
  • Denniston AK, Lee AY, Lee CS, et al. United Kingdom Diabetic Retinopathy Electronic Medical Record (UK DR EMR) users group: report 4, real-world data on the impact of deprivation on the presentation of diabetic eye disease at hospital services. Br J Ophthalmol. 2019;103(6):837–843. PMID: 30269098; PMCID: PMC6582816. doi:10.1136/bjophthalmol-2018-312568
  • Prathiba V, Rajalakshmi R, Arulmalar S, et al. Accuracy of the smartphone-based nonmydriatic retinal camera in the detection of sight-threatening diabetic retinopathy. Indian J Ophthalmol. 2020;68(Suppl 1):S42. doi:10.4103/ijo.IJO_1937_19
  • Malerbi FK, Morales PH, Farah ME, et al. Comparison between binocular indirect ophthalmoscopy and digital retinography for diabetic retinopathy screening: the multicenter Brazilian type 1 diabetes study. Diabetol Metab Syndr. 2015;7(1):116. doi:10.1186/s13098-015-0110-8
  • Russo A, Mapham W, Turano R, et al. Comparison of smartphone ophthalmoscopy with slit-lamp biomicroscopy for grading vertical cup-to-disc ratio. J Glaucoma. 2016;25(9):e777. doi:10.1097/IJG.0000000000000499
  • Bastawrous A, Giardini ME, Bolster NM, et al. Clinical validation of a smartphone-based adapter for optic disc imaging in Kenya. JAMA Ophthalmol. 2016;134(2):151–158. PMID: 26606110; PMCID: PMC5321504. doi:10.1001/jamaophthalmol.2015.4625
  • Giardini ME, Livingstone IAT, Jordan S, et al. A smartphone based ophthalmoscope. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf. 2014;2014:2177–2180. doi:10.1109/EMBC.2014.6944049
  • Issac A, Partha Sarathi M, Dutta MK. An adaptive threshold based image processing technique for improved glaucoma detection and classification. Comput Methods Programs Biomed. 2015;122(2):229–244. doi:10.1016/j.cmpb.2015.08.002
  • Dickson D, Fouzdar-Jain S, MacDonald C, et al. Comparison study of funduscopic exam of pediatric patients using the D-EYE method and conventional indirect ophthalmoscopic methods. Open J Ophthalmol. 2017;7(3):145–152. doi:10.4236/ojoph.2017.73020
  • Furdova A, Furdova A, Krcmery V. Our experience with smartphone and spherical lens for the eye fundus examination during humanitarian project in Africa. Int J Ophthalmol. 2017;10(1):157–160. doi:10.18240/ijo.2017.01.25
  • Jonas JB, Budde WM, Lang P. Neuroretinal rim width ratios in morphological glaucoma diagnosis. Br J Ophthalmol. 1998;82(12):1366–1371. PMID: 9930265; PMCID: PMC1722465. doi:10.1136/bjo.82.12.1366
  • Ávila FJ, Bueno JM, Remón L. Superpixel-based optic nerve head segmentation method of fundus images for glaucoma assessment. Diagnostics. 2022;12(12):3210. PMID: 36553217; PMCID: PMC9777478. doi:10.3390/diagnostics12123210
  • Kyari F, Gilbert C. Agreement in measurement of optic cup-to-disc ratio with stereo biomicroscope funduscopy and digital image analysis: results from the Nigeria national blindness and visual impairment survey. Ophthalmic Epidemiol. 2017;24(1):57–62. doi:10.1080/09286586.2016.1254806
  • Zhang W, Nicholas P, Schuman SG, et al. Screening for diabetic retinopathy using a portable, noncontact, nonmydriatic handheld retinal camera. J Diabetes Sci Technol. 2017;11(1):128–134. doi:10.1177/1932296816658902
  • Kortüm K, Müller M, Hirneiß C, et al. Smart eye data: Entwicklung eines Fundaments für medizinische Forschung mittels Smart-DataApplikationen [Smart eye data: development of a foundation for medical research using Smart Data applications]. Ophthalmol Z Dtsch Ophthalmol Ges. 2016;113(6):469–477. German. doi:10.1007/s00347-016-0272-2
  • Keel S, Scheetz J, Holloway E, et al. Utilisation and perceptions towards smart device visual acuity assessment in Australia: a mixed methods approach. BMJ Open. 2019;9(3):e024266. doi:10.1136/bmjopen-2018-024266
  • Choudhri AF, Chatterjee AR, Javan R, Radvany MG, Shih G. Security issues for mobile medical imaging: a primer. RadioGraphics. 2015;35(6):1814–1824. doi:10.1148/rg.2015140039
  • Shanmugam MP. Video indirect ophthalmoscopy using a hand-held video camera. Indian J Ophthalmol. 2011;59(1):53–55. doi:10.4103/0301-4738.73718
  • Muiesan ML, Salvetti M, Paini A, et al. Ocular fundus photography with a smartphone device in acute hypertension. J Hypertens. 2017;35(8):1660–1665. doi:10.1097/HJH.0000000000001354
  • Wu Y, Wei Z, Yao H, et al. TeleOph: a secure real-time teleophthalmology system. IEEE Trans Inf Technol Biomed. 2010;14(5):1259–1266. doi:10.1109/TITB.2010.2058124
  • Toslak D, Liu C, Alam M Nur and Yao X. (2018). Near-infrared light-guided miniaturized indirect ophthalmoscopy for nonmydriatic wide-field fundus photography. Opt. Lett., 43(11), 2551 10.1364/OL.43.002551
  • Mamtora S, Sandinha MT, Ajith A, Song A, Steel DHW. Smart phone ophthalmoscopy: a potential replacement for the direct ophthalmoscope. Eye. 2018;32(11):1766–1771. doi:10.1038/s41433-018-0177-1
  • Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167–175. doi:10.1136/bjophthalmol-2018-313173
  • Zheng K, Abraham J, Novak LL, Reynolds TL, Gettinger A. A survey of the literature on unintended consequences associated with health information technology: 2014–2015. Yearb Med Inform. 2016;(1):13–29. doi:10.15265/IY-2016-036
  • Dabasia PL, Edgar DF, Garway-Heath DF, Lawrenson JG. A survey of current and anticipated use of standard and specialist equipment by UK optometrists. Ophthalmic Physiol Opt. 2014;34(5):592–613. doi:10.1111/opo.12150
  • Aanensen DM, Huntley DM, Feil EJ, al-Own F, Spratt BG. EpiCollect: linking smartphones to web applications for epidemiology, ecology and community data collection. PLoS One. 2009;4(9):e6968. doi:10.1371/journal.pone.0006968