297
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Heads-Up Three-Dimensional Viewing Systems in Vitreoretinal Surgery: An Updated Perspective

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 2539-2552 | Received 03 Jun 2023, Accepted 14 Aug 2023, Published online: 28 Aug 2023

References

  • Agranat JS, Miller JB. 3D surgical viewing systems in vitreoretinal surgery. Int Ophthalmol Clin. 2020;60:17–23. doi:10.1097/iio.0000000000000291
  • Eckardt C, Paulo EB. Heads-up Surgery for Vitreoretinal Procedures: an experimental and clinical study. Retina. 2016;36:137–147. doi:10.1097/iae.0000000000000689
  • Kelkar JA, Kelkar AS, Bolisetty M. Initial experience with three-dimensional heads-up display system for cataract surgery - A comparative study. Indian J Ophthalmol. 2021;69:2304–2309. doi:10.4103/ijo.IJO_231_21
  • Del Turco C, D’AmicoRicci G, Dal Vecchio M, et al. Heads-up 3D eye surgery: safety outcomes and technological review after 2 years of day-to-day use. Eur J Ophthalmol. 2021;11206721211012856. doi:10.1177/11206721211012856
  • Romano MR, Cennamo G, Comune C, et al. Evaluation of 3D heads-up vitrectomy: outcomes of psychometric skills testing and surgeon satisfaction. Eye. 2018;32:1093–1098. doi:10.1038/s41433-018-0027-1
  • Agranat JS, Miller JB, Douglas VP, et al. The scope of three-dimensional digital visualization systems in vitreoretinal surgery. Clin Ophthalmol. 2019;13:2093–2096. doi:10.2147/OPTH.S213834
  • Kantor P, Matonti F, Varenne F, et al. Use of the heads-up NGENUITY 3D visualization system for vitreoretinal surgery: a retrospective evaluation of outcomes in a French tertiary center. Sci Rep. 2021;11:10031. doi:10.1038/s41598-021-88993-z
  • Zhang T, Tang W, Xu G. Comparative analysis of three-dimensional heads-up vitrectomy and traditional microscopic vitrectomy for vitreoretinal diseases. Curr Eye Res. 2019;44:1080–1086. doi:10.1080/02713683.2019.1612443
  • Kumar A, Hasan N, Kakkar P, et al. Comparison of clinical outcomes between “heads-up” 3D viewing system and conventional microscope in macular hole surgeries: a pilot study. Indian J Ophthalmol. 2018;66:1816–1819. doi:10.4103/ijo.IJO_59_18
  • Reddy S, Mallikarjun K, Mohamed A, et al. Comparing clinical outcomes of macular hole surgeries performed by trainee surgeons using a 3D heads-up display viewing system versus a standard operating microscope. Int Ophthalmol. 2021;41:2649–2655. doi:10.1007/s10792-021-01792-3
  • Kim DJ, Kim DG, Park KH. Three-dimensional heads-up vitrectomy versus conventional microscopic vitrectomy for patients with epiretinal membrane. Retina. 2023;43:1010–1018. doi:10.1097/iae.0000000000003762
  • Zhao XY, Zhao Q, Li NN, et al. Surgery-related characteristics, efficacy, safety and surgical team satisfaction of three-dimensional heads-up system versus traditional microscopic equipment for various vitreoretinal diseases. Graefes Arch Clin Exp Ophthalmol. 2023;261:669–679. doi:10.1007/s00417-022-05850-z
  • Coppola M, La Spina C, Rabiolo A, Querques G, Bandello F. Heads-up 3D vision system for retinal detachment surgery. Int J Retina Vitreous. 2017;3:46. doi:10.1186/s40942-017-0099-2
  • Rani D, Kumar A, Chandra P, Chawla R, Hasan N, Agarwal D. Heads-up 3D viewing system in rhegmatogenous retinal detachment with proliferative vitreoretinopathy - A prospective randomized trial. Indian J Ophthalmol. 2021;69:320–325. doi:10.4103/ijo.IJO_1720_20
  • Kannan NB, Jena S, Sen S, Kohli P, Ramasamy K. A comparison of using digitally assisted vitreoretinal surgery during repair of rhegmatogenous retinal detachments to the conventional analog microscope: a prospective interventional study. Int Ophthalmol. 2021;41:1689–1695. doi:10.1007/s10792-021-01725-0
  • Zeng R, Feng Y, Begaj T, Baldwin G, Miller JB. Comparison of the safety and efficacy of a 3-dimensional heads-up display vs a standard operating microscope in retinal detachment repair. J Vitreoretin Dis. 2023;7:97–102. doi:10.1177/24741264221150074
  • Asani B, Siedlecki J, Schworm B, et al. 3D heads-up display vs. Standard operating microscope vitrectomy for rhegmatogenous retinal detachment. Front Med. 2020;7:615515. doi:10.3389/fmed.2020.615515
  • Talcott KE, Adam MK, Sioufi K, et al. Comparison of a three-dimensional heads-up display surgical platform with a standard operating microscope for macular surgery. Ophthalmol Retina. 2019;3:244–251. doi:10.1016/j.oret.2018.10.016
  • Palácios RM, Maia A, Farah ME, Maia M. Learning curve of three-dimensional heads-up vitreoretinal surgery for treating macular holes: a prospective study. Int Ophthalmol. 2019;39:2353–2359. doi:10.1007/s10792-019-01075-y
  • Mura M, Martin W, Williams KK, Abulon DJK. Comparison of 3D digitally assisted visualization system with current standard visualization for the removal of vitreous in a preclinical model. Clin Ophthalmol. 2021;15:4499–4505. doi:10.2147/opth.S327570
  • Kita M, Mori Y, Hama S. Hybrid wide-angle viewing-endoscopic vitrectomy using a 3D visualization system. Clin Ophthalmol. 2018;12:313–317. doi:10.2147/opth.S156497
  • Todorich B, Stem MS, Hassan TS, Williams GA, Faia LJ. Scleral transillumination with digital heads-up display: a novel technique for visualization during vitrectomy surgery. Ophthalmic Surg Lasers Imaging Retina. 2018;49:436–439. doi:10.3928/23258160-20180601-08
  • Xia S, Zhao X-Y, Wang E-Q, Chen Y-X. Comparison of face-down posturing with nonsupine posturing after macular hole surgery: a meta-analysis. BMC Ophthalmol. 2019;19(1):34. doi:10.1186/s12886-019-1047-8
  • Francone A, Charles M. Extensive internal limiting membrane peeling for proliferative vitreoretinopathy. Int Ophthalmol. 2023;43:147–153. doi:10.1007/s10792-022-02397-0
  • Guan L, Chen J, Tang Y, et al. 3D visualization system-assisted vitrectomy for rhegmatogenous retinal detachment: leave out the perfluorocarbon liquid. Ophthalmol Ther. 2023;12:1611–1619. doi:10.1007/s40123-023-00692-2
  • Nam KY, Kim WJ, Jo YJ, Kim JY. Scleral buckling technique using a 25-gauge chandelier endoilluminator. RETINA. 2013;33:880–882. doi:10.1097/IAE.0b013e31827e2602
  • Agranat JS, Douglas VP, Douglas KAA, Miller JB. A guarded light pipe for direct visualization during primary scleral buckling on the Ngenuity platform. Int J Retina Vitreous. 2020;6:42. doi:10.1186/s40942-020-00246-9
  • Baldwin G, Sokol JT, Ludwig CA, Miller JB. A Comparative study of traditional scleral buckling to a new technique: guarded light pipe with heads-up three-dimensional visualization. Clin Ophthalmol. 2022;16:3079–3088. doi:10.2147/opth.S378179
  • Imai H, Tetsumoto A, Inoue S, et al. Intraoperative three-dimensional fluorescein angiography-guided pars plana vitrectomy for the treatment of proliferative diabetic retinopathy: the maximized utility of the digital assisted vitrectomy. Retina. 2023;43:359–362. doi:10.1097/iae.0000000000002805
  • Imai H, Tetsumoto A, Yamada H, et al. Intraoperative three-dimensional fluorescein angiography-guided pars plana vitrectomy for branch retinal vein occlusion. Retin Cases Brief Rep. 2022;16:802–805. doi:10.1097/icb.0000000000001091
  • Ehlers JP, Goshe J, Dupps WJ, et al. Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER Study RESCAN Results. JAMA Ophthalmol. 2015;133:1124–1132. doi:10.1001/jamaophthalmol.2015.2376
  • Ray R, Barañano DE, Fortun JA, et al. Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery. Ophthalmology. 2011;118:2212–2217. doi:10.1016/j.ophtha.2011.04.012
  • Ehlers JP, Dupps WJ, Kaiser PK, et al. The prospective intraoperative and perioperative ophthalmic ImagiNg with optical CoherEncE TomogRaphy (PIONEER) study: 2-year results. Am J Ophthalmol. 2014;158:999–1007. doi:10.1016/j.ajo.2014.07.034
  • Ehlers JP, Uchida A, Srivastava SK. The integrative surgical theater: combining intraoperative optical coherence tomography and 3D digital visualization for vitreoretinal surgery in the DISCOVER study. Retina. 2018;38(1):S88–s96. doi:10.1097/iae.0000000000001999
  • Palácios RM, Kayat KV, Farah ME, Devin F. Heads-up digitally assisted surgical viewing with intraoperative optical coherence tomography for myopic schisis repair. J Ophthalmic Vis Res. 2021;16:127–130. doi:10.18502/jovr.v16i1.8259
  • Chhaya N, Helmy O, Piri N, Palacio A, Schaal S. Comparison of 2D and 3D video displays for teaching vitreoretinal surgery. Retina. 2018;38:1556–1561. doi:10.1097/iae.0000000000001743
  • Shoshany TN, Agranat JS, Armstrong G, Miller JB. The user experience on a 3-dimensional heads-up display for vitreoretinal surgery across all members of the health care team: a survey of medical students, residents, fellows, attending surgeons, nurses, and anesthesiologists. J VitreoRet Dis. 2020;4:459–466. doi:10.1177/2474126420929614
  • Cheng TC, Yahya MFN, Mohd Naffi AA, et al. Evaluation of three-dimensional heads up ophthalmic surgery demonstration from the perspective of surgeons and postgraduate trainees. J Craniofac Surg. 2021;32:2285–2291. doi:10.1097/scs.0000000000007645
  • Seddon IA, Rahimy E, Miller JB, Charles S, Kitchens J, Houston SK. Feasibility and potential for real-time 3D vitreoretinal surgery telementoring. Retina. 2022. doi:10.1097/iae.0000000000003656
  • Kitzmann AS, Fethke NB, Baratz KH, Zimmerman MB, Hackbarth DJ, Gehrs KM. A survey study of musculoskeletal disorders among eye care physicians compared with family medicine physicians. Ophthalmology. 2012;119:213–220. doi:10.1016/j.ophtha.2011.06.034
  • Schechet MDSA, DeVience MDE, DeVience PS, Shukla MDS, Kaleem MDM. Survey of musculoskeletal disorders among US ophthalmologists. Digit J Ophthalmol. 2020;26:36–41. doi:10.5693/djo.01.2020.02.001
  • Weinstock RJ, Ainslie-Garcia MH, Ferko NC, et al. Comparative assessment of ergonomic experience with heads-up display and conventional surgical microscope in the operating room. Clin Ophthalmol. 2021;15:347–356. doi:10.2147/opth.S292152
  • Tan NE, Wortz BT, Rosenberg ED, Radcliffe NM, Gupta PK. Impact of heads-up display use on ophthalmologist productivity, wellness, and musculoskeletal symptoms: a survey study. J Curr Ophthalmol. 2022;34:305–311. doi:10.4103/joco.joco_115_22
  • Skinner CC, Riemann CD. “Heads up” digitally assisted surgical viewing for retinal detachment repair in a patient with severe kyphosis. Retin Cases Brief Rep. 2018;12:257–259. doi:10.1097/icb.0000000000000486
  • Postel EA, Pulido JS, Byrnes GA, et al. Long-term follow-up of iatrogenic phototoxicity. Arch Ophthalmol. 1998;116:753–757. doi:10.1001/archopht.116.6.753
  • Franklin AJ, Sarangapani R, Yin L, Tripathi B, Riemann C. Digital vs analog surgical visualization for vitreoretinal surgery. Retinal Phys. 2017;2017:1.
  • Adam MK, Thornton S, Regillo CD, Park C, Ho AC, Hsu J. Minimal endoillumination levels and display luminous emittance during three-dimensional heads-up vitreoretinal surgery. Retina. 2017;37:1746–1749. doi:10.1097/iae.0000000000001420
  • Vélasque L, Arbousoff N, Rigaudier F, et al. Lux study: contribution of a three-dimensional, high dynamic range, ultra-high-definition heads-up visualization system to a significant delivered light intensity decrease during different types of ocular surgeries. J Fr Ophtalmol. 2021;44:1129–1141. doi:10.1016/j.jfo.2021.01.006
  • Horigome Y, Iwashita Y, Hirono K, et al. Evaluation of the retinal hazard with 3D digitally assisted visualization system and conventional microscope in macular surgeries. Retina. 2022;42:2301–2306. doi:10.1097/iae.0000000000003621
  • Bloch E, Uddin N, Gannon L, Rantell K, Jain S. The effects of absence of stereopsis on performance of a simulated surgical task in two-dimensional and three-dimensional viewing conditions. Br J Ophthalmol. 2015;99:240–245. doi:10.1136/bjophthalmol-2013-304517
  • Freeman WR, Chen KC, Ho J, et al. Resolution, depth of field, and physician satisfaction during digitally assisted vitreoretinal surgery. Retina. 2019;39:1768–1771. doi:10.1097/iae.0000000000002236
  • Takayama K, Sato T, Karasawa Y, Sato S, Ito M, Takeuchi M. Phototoxicity of indocyanine green and Brilliant Blue G under continuous fluorescent illumination on cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2012;53:7389–7394. doi:10.1167/iovs.12-10754
  • Park SJ, Do JR, Shin JP, Park DH. Customized color settings of digitally assisted vitreoretinal surgery to enable use of lower dye concentrations during macular surgery. Front Med. 2021;8:810070. doi:10.3389/fmed.2021.810070
  • Palácios RM, Kayat KV, Morel C, et al. Clinical study on the initial experiences of french vitreoretinal surgeons with heads-up surgery. Curr Eye Res. 2020;45:1265–1272. doi:10.1080/02713683.2020.1737136
  • Rizzo S, Abbruzzese G, Savastano A, et al. 3D surgical viewing system in ophthalmology: perceptions of the surgical team. RETINA. 2018;38:857–861. doi:10.1097/iae.0000000000002018
  • Lu ES, Reppucci VS, Houston SKS, Kras AL, Miller JB. Three-dimensional telesurgery and remote proctoring over a 5G network. Digit J Ophthalmol. 2021;27:38–43. doi:10.5693/djo.01.2021.06.003
  • Valenti A, Fortuna G, Barillari C, Cannone E, Boccuni V, Iavicoli S. The future of scientific conferences in the era of the COVID-19 pandemic: critical analysis and future perspectives. Ind Health. 2021;59:334–339. doi:10.2486/indhealth.2021-0102
  • Ong J, Hariprasad SM, Chhablani J. Into the retinaverse: a new frontier of retina in the metaverse. Ophthalmic Surg Lasers Imaging Retina. 2022;53:595–600. doi:10.3928/23258160-20221017-01
  • Young A. Ophthalmology takes the plunge into the metaverse. MetaMed; 2022. Available from: https://www.metamedmedia.com/blog/ophthalmology-takes-the-plunge-into-the-metaverse. Accessed August 17, 2023.
  • Chammas J, Sauer A, Pizzuto J, et al. Da vinci xi robot-assisted penetrating keratoplasty. Transl Vis Sci Technol. 2017;6:21. doi:10.1167/tvst.6.3.21
  • Molaei A, Abedloo E, de Smet MD, et al. Toward the art of robotic-assisted vitreoretinal surgery. J Ophthalmic Vis Res. 2017;12:212–218. doi:10.4103/jovr.jovr_63_17
  • Gijbels A, Smits J, Schoevaerdts L, et al. In-human robot-assisted retinal vein cannulation, A world first. Ann Biomed Eng. 2018;46:1676–1685. doi:10.1007/s10439-018-2053-3